MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   GIF version

Theorem acndom2 8760
Description: A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))

Proof of Theorem acndom2
Dummy variables 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7852 . 2 (𝑋𝑌 → ∃𝑓 𝑓:𝑋1-1𝑌)
2 simplr 788 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑌AC 𝐴)
3 imassrn 5396 . . . . . . . . . . 11 (𝑓 “ (𝑔𝑥)) ⊆ ran 𝑓
4 simplll 794 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝑋1-1𝑌)
5 f1f 6014 . . . . . . . . . . . 12 (𝑓:𝑋1-1𝑌𝑓:𝑋𝑌)
6 frn 5966 . . . . . . . . . . . 12 (𝑓:𝑋𝑌 → ran 𝑓𝑌)
74, 5, 63syl 18 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ran 𝑓𝑌)
83, 7syl5ss 3579 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ⊆ 𝑌)
9 elmapi 7765 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
109adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
1110ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}))
1211eldifad 3552 . . . . . . . . . . . . . . 15 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝒫 𝑋)
1312elpwid 4118 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ 𝑋)
14 f1dm 6018 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌 → dom 𝑓 = 𝑋)
154, 14syl 17 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → dom 𝑓 = 𝑋)
1613, 15sseqtr4d 3605 . . . . . . . . . . . . 13 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ dom 𝑓)
17 sseqin2 3779 . . . . . . . . . . . . 13 ((𝑔𝑥) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
1816, 17sylib 207 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
19 eldifsni 4261 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}) → (𝑔𝑥) ≠ ∅)
2011, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ≠ ∅)
2118, 20eqnetrd 2849 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
22 imadisj 5403 . . . . . . . . . . . 12 ((𝑓 “ (𝑔𝑥)) = ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) = ∅)
2322necon3bii 2834 . . . . . . . . . . 11 ((𝑓 “ (𝑔𝑥)) ≠ ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
2421, 23sylibr 223 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ≠ ∅)
258, 24jca 553 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
2625ralrimiva 2949 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
27 acni2 8752 . . . . . . . 8 ((𝑌AC 𝐴 ∧ ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
282, 26, 27syl2anc 691 . . . . . . 7 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
29 acnrcl 8748 . . . . . . . . 9 (𝑌AC 𝐴𝐴 ∈ V)
3029ad3antlr 763 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝐴 ∈ V)
31 simp-4l 802 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1𝑌)
32 f1f1orn 6061 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌𝑓:𝑋1-1-onto→ran 𝑓)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1-onto→ran 𝑓)
34 simprr 792 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))
353, 34sseldi 3566 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ ran 𝑓)
36 f1ocnvfv2 6433 . . . . . . . . . . . . . 14 ((𝑓:𝑋1-1-onto→ran 𝑓 ∧ (𝑘𝑥) ∈ ran 𝑓) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3733, 35, 36syl2anc 691 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3837, 34eqeltrd 2688 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)))
39 f1ocnv 6062 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝑋)
40 f1of 6050 . . . . . . . . . . . . . . 15 (𝑓:ran 𝑓1-1-onto𝑋𝑓:ran 𝑓𝑋)
4133, 39, 403syl 18 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:ran 𝑓𝑋)
4241, 35ffvelrnd 6268 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ 𝑋)
4313ad2ant2r 779 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑔𝑥) ⊆ 𝑋)
44 f1elima 6421 . . . . . . . . . . . . 13 ((𝑓:𝑋1-1𝑌 ∧ (𝑓‘(𝑘𝑥)) ∈ 𝑋 ∧ (𝑔𝑥) ⊆ 𝑋) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4531, 42, 43, 44syl3anc 1318 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4638, 45mpbid 221 . . . . . . . . . . 11 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
4746expr 641 . . . . . . . . . 10 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ 𝑥𝐴) → ((𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4847ralimdva 2945 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) → (∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4948impr 647 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
50 acnlem 8754 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5130, 49, 50syl2anc 691 . . . . . . 7 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5228, 51exlimddv 1850 . . . . . 6 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5352ralrimiva 2949 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
54 vex 3176 . . . . . . . 8 𝑓 ∈ V
5554dmex 6991 . . . . . . 7 dom 𝑓 ∈ V
5614, 55syl6eqelr 2697 . . . . . 6 (𝑓:𝑋1-1𝑌𝑋 ∈ V)
57 isacn 8750 . . . . . 6 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5856, 29, 57syl2an 493 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5953, 58mpbird 246 . . . 4 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → 𝑋AC 𝐴)
6059ex 449 . . 3 (𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
6160exlimiv 1845 . 2 (∃𝑓 𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
621, 61syl 17 1 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cdom 7839  AC wacn 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-dom 7843  df-acn 8651
This theorem is referenced by:  acnen2  8761  dfac13  8847  iundomg  9242  iunctb  9275
  Copyright terms: Public domain W3C validator