MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadisj Structured version   Visualization version   GIF version

Theorem imadisj 5403
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 5051 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2615 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 5263 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 5339 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 3767 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2632 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2615 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 287 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  cin 3539  c0 3874  dom cdm 5038  ran crn 5039  cres 5040  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by:  ndmima  5421  fnimadisj  5925  fnimaeq0  5926  fimacnvdisj  5996  acndom2  8760  isf34lem5  9083  isf34lem7  9084  isf34lem6  9085  limsupgre  14060  isercolllem3  14245  pf1rcl  19534  cnconn  21035  1stcfb  21058  xkohaus  21266  qtopeu  21329  fbasrn  21498  mbflimsup  23239  eulerpartlemt  29760  erdszelem5  30431  fnwe2lem2  36639  imadisjld  37478  imadisjlnd  37479  wnefimgd  37480
  Copyright terms: Public domain W3C validator