MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimsup Structured version   Visualization version   GIF version

Theorem mbflimsup 23239
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
mbflimsup.1 𝑍 = (ℤ𝑀)
mbflimsup.2 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
mbflimsup.h 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
mbflimsup.3 (𝜑𝑀 ∈ ℤ)
mbflimsup.4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
mbflimsup.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimsup.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑚   𝜑,𝑛,𝑥   𝑚,𝑀   𝑚,𝑛,𝑥,𝑍
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚)   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimsup
Dummy variables 𝑖 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflimsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
2 mbflimsup.h . . . . . 6 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 mbflimsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
4 fvex 6113 . . . . . . . . 9 (ℤ𝑀) ∈ V
53, 4eqeltri 2684 . . . . . . . 8 𝑍 ∈ V
65mptex 6390 . . . . . . 7 (𝑛𝑍𝐵) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ V)
8 uzssz 11583 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
93, 8eqsstri 3598 . . . . . . . 8 𝑍 ⊆ ℤ
10 zssre 11261 . . . . . . . 8 ℤ ⊆ ℝ
119, 10sstri 3577 . . . . . . 7 𝑍 ⊆ ℝ
1211a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → 𝑍 ⊆ ℝ)
13 mbflimsup.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
143uzsup 12524 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1513, 14syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
1615adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝑍, ℝ*, < ) = +∞)
172, 7, 12, 16limsupval2 14059 . . . . 5 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf((𝐻𝑍), ℝ*, < ))
18 imassrn 5396 . . . . . . 7 (𝐻𝑍) ⊆ ran 𝐻
1913adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
20 mbflimsup.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
2120anass1rs 845 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
22 eqid 2610 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2321, 22fmptd 6292 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
24 mbflimsup.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
2524ltpnfd 11831 . . . . . . . . 9 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) < +∞)
262, 3limsupgre 14060 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ ∧ (lim sup‘(𝑛𝑍𝐵)) < +∞) → 𝐻:ℝ⟶ℝ)
2719, 23, 25, 26syl3anc 1318 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐻:ℝ⟶ℝ)
28 frn 5966 . . . . . . . 8 (𝐻:ℝ⟶ℝ → ran 𝐻 ⊆ ℝ)
2927, 28syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ ℝ)
3018, 29syl5ss 3579 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ⊆ ℝ)
31 fdm 5964 . . . . . . . . . . 11 (𝐻:ℝ⟶ℝ → dom 𝐻 = ℝ)
3227, 31syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom 𝐻 = ℝ)
3332ineq1d 3775 . . . . . . . . 9 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = (ℝ ∩ 𝑍))
34 sseqin2 3779 . . . . . . . . . 10 (𝑍 ⊆ ℝ ↔ (ℝ ∩ 𝑍) = 𝑍)
3511, 34mpbi 219 . . . . . . . . 9 (ℝ ∩ 𝑍) = 𝑍
3633, 35syl6eq 2660 . . . . . . . 8 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = 𝑍)
37 uzid 11578 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3813, 37syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
3938, 3syl6eleqr 2699 . . . . . . . . . 10 (𝜑𝑀𝑍)
4039adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
41 ne0i 3880 . . . . . . . . 9 (𝑀𝑍𝑍 ≠ ∅)
4240, 41syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑍 ≠ ∅)
4336, 42eqnetrd 2849 . . . . . . 7 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) ≠ ∅)
44 imadisj 5403 . . . . . . . 8 ((𝐻𝑍) = ∅ ↔ (dom 𝐻𝑍) = ∅)
4544necon3bii 2834 . . . . . . 7 ((𝐻𝑍) ≠ ∅ ↔ (dom 𝐻𝑍) ≠ ∅)
4643, 45sylibr 223 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ≠ ∅)
4724leidd 10473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)))
4821rexrd 9968 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ*)
4948, 22fmptd 6292 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
5024rexrd 9968 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*)
512limsuple 14057 . . . . . . . . . . 11 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5212, 49, 50, 51syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5347, 52mpbid 221 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
54 ssralv 3629 . . . . . . . . 9 (𝑍 ⊆ ℝ → (∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5511, 53, 54mpsyl 66 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
562limsupgf 14054 . . . . . . . . . 10 𝐻:ℝ⟶ℝ*
57 ffn 5958 . . . . . . . . . 10 (𝐻:ℝ⟶ℝ*𝐻 Fn ℝ)
5856, 57ax-mp 5 . . . . . . . . 9 𝐻 Fn ℝ
59 breq2 4587 . . . . . . . . . 10 (𝑧 = (𝐻𝑦) → ((lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
6059ralima 6402 . . . . . . . . 9 ((𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
6158, 12, 60sylancr 694 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
6255, 61mpbird 246 . . . . . . 7 ((𝜑𝑥𝐴) → ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧)
63 breq1 4586 . . . . . . . . 9 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6463ralbidv 2969 . . . . . . . 8 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑧 ∈ (𝐻𝑍)𝑦𝑧 ↔ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6564rspcev 3282 . . . . . . 7 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
6624, 62, 65syl2anc 691 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
67 infxrre 12038 . . . . . 6 (((𝐻𝑍) ⊆ ℝ ∧ (𝐻𝑍) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
6830, 46, 66, 67syl3anc 1318 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
69 df-ima 5051 . . . . . . 7 (𝐻𝑍) = ran (𝐻𝑍)
7027feqmptd 6159 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 = (𝑖 ∈ ℝ ↦ (𝐻𝑖)))
7170reseq1d 5316 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐻𝑍) = ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍))
72 resmpt 5369 . . . . . . . . . . 11 (𝑍 ⊆ ℝ → ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
7311, 72ax-mp 5 . . . . . . . . . 10 ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖))
7471, 73syl6eq 2660 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
7511sseli 3564 . . . . . . . . . . . . 13 (𝑖𝑍𝑖 ∈ ℝ)
76 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐻:ℝ⟶ℝ ∧ 𝑖 ∈ ℝ) → (𝐻𝑖) ∈ ℝ)
7727, 75, 76syl2an 493 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ)
7877rexrd 9968 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ*)
79 simplll 794 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
803uztrn2 11581 . . . . . . . . . . . . . . . . 17 ((𝑖𝑍𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
8180adantll 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
82 simpllr 795 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥𝐴)
8379, 81, 82, 20syl12anc 1316 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ)
84 eqid 2610 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)
8583, 84fmptd 6292 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
86 frn 5966 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
8785, 86syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
8884, 83dmmptd 5937 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (ℤ𝑖))
89 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → 𝑖𝑍)
9089, 3syl6eleq 2698 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
91 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
9290, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖 ∈ ℤ)
9392adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
94 uzid 11578 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
95 ne0i 3880 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑖) → (ℤ𝑖) ≠ ∅)
9693, 94, 953syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ≠ ∅)
9788, 96eqnetrd 2849 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
98 dm0rn0 5263 . . . . . . . . . . . . . . 15 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅)
9998necon3bii 2834 . . . . . . . . . . . . . 14 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
10097, 99sylib 207 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
10190adantlr 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
102 uzss 11584 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
104103, 3syl6sseqr 3615 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
10577leidd 10473 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ (𝐻𝑖))
10611a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑍 ⊆ ℝ)
10749adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
108 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖𝑍)
10911, 108sseldi 3566 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
1102limsupgle 14056 . . . . . . . . . . . . . . . . . . 19 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ (𝐻𝑖) ∈ ℝ*) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
111106, 107, 109, 78, 110syl211anc 1324 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
112105, 111mpbid 221 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
113 ssralv 3629 . . . . . . . . . . . . . . . . 17 ((ℤ𝑖) ⊆ 𝑍 → (∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
114104, 112, 113sylc 63 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
115104adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (ℤ𝑖) ⊆ 𝑍)
116115resmptd 5371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛𝑍𝐵) ↾ (ℤ𝑖)) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
117116fveq1d 6105 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘))
118 fvres 6117 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑖) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
119118adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
120117, 119eqtr3d 2646 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
121120breq1d 4593 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
122 eluzle 11576 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑖) → 𝑖𝑘)
123122adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑖𝑘)
124 biimt 349 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑘 → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
125123, 124syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
126121, 125bitrd 267 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
127126ralbidva 2968 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
128114, 127mpbird 246 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖))
129 ffn 5958 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
130 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) → (𝑧 ≤ (𝐻𝑖) ↔ ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
131130ralrn 6270 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
13285, 129, 1313syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
133128, 132mpbird 246 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖))
134 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐻𝑖) → (𝑧𝑦𝑧 ≤ (𝐻𝑖)))
135134ralbidv 2969 . . . . . . . . . . . . . . 15 (𝑦 = (𝐻𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
136135rspcev 3282 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ ∧ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
13777, 133, 136syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
138 suprcl 10862 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
13987, 100, 137, 138syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
140139rexrd 9968 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*)
14187adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
142100adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
143137adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
1449sseli 3564 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
145 eluz 11577 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
14693, 144, 145syl2an 493 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
147146biimprd 237 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘𝑘 ∈ (ℤ𝑖)))
148147impr 647 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → 𝑘 ∈ (ℤ𝑖))
149148, 120syldan 486 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
15085adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
151150, 129syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
152 fnfvelrn 6264 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
153151, 148, 152syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
154149, 153eqeltrrd 2689 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
155 suprub 10863 . . . . . . . . . . . . . . 15 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
156141, 142, 143, 154, 155syl31anc 1321 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
157156expr 641 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
158157ralrimiva 2949 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
1592limsupgle 14056 . . . . . . . . . . . . 13 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
160106, 107, 109, 140, 159syl211anc 1324 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
161158, 160mpbird 246 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
162 suprleub 10866 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ (𝐻𝑖) ∈ ℝ) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
16387, 100, 137, 77, 162syl31anc 1321 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
164133, 163mpbird 246 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖))
16578, 140, 161, 164xrletrid 11862 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) = sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
166165mpteq2dva 4672 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑖𝑍 ↦ (𝐻𝑖)) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
16774, 166eqtrd 2644 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
168167rneqd 5274 . . . . . . 7 ((𝜑𝑥𝐴) → ran (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
16969, 168syl5eq 2656 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
170169infeq1d 8266 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ, < ) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
17117, 68, 1703eqtrd 2648 . . . 4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
172171mpteq2dva 4672 . . 3 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
1731, 172syl5eq 2656 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
174 eqid 2610 . . 3 (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
175 eqid 2610 . . . 4 (ℤ𝑖) = (ℤ𝑖)
176 eqid 2610 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
177 simpll 786 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
17880adantll 746 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
179 mbflimsup.5 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
180177, 178, 179syl2anc 691 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → (𝑥𝐴𝐵) ∈ MblFn)
181 simpll 786 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝜑)
18280ad2ant2lr 780 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑛𝑍)
183 simprr 792 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑥𝐴)
184181, 182, 183, 20syl12anc 1316 . . . 4 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝐵 ∈ ℝ)
18583ralrimiva 2949 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ)
186 breq1 4586 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
18784, 186ralrnmpt 6276 . . . . . . . 8 (∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
188185, 187syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
189188rexbidv 3034 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
190137, 189mpbid 221 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
191190an32s 842 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
192175, 176, 92, 180, 184, 191mbfsup 23237 . . 3 ((𝜑𝑖𝑍) → (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) ∈ MblFn)
193139an32s 842 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
194193anasss 677 . . 3 ((𝜑 ∧ (𝑖𝑍𝑥𝐴)) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
1952limsuple 14057 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19612, 49, 50, 195syl3anc 1318 . . . . . . 7 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19747, 196mpbid 221 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
198 ssralv 3629 . . . . . 6 (𝑍 ⊆ ℝ → (∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19911, 197, 198mpsyl 66 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
200165breq2d 4595 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
201200ralbidva 2968 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
202199, 201mpbid 221 . . . 4 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
203 breq1 4586 . . . . . 6 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
204203ralbidv 2969 . . . . 5 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
205204rspcev 3282 . . . 4 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
20624, 202, 205syl2anc 691 . . 3 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
2073, 174, 13, 192, 194, 206mbfinf 23238 . 2 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) ∈ MblFn)
208173, 207eqeltrd 2688 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  infcinf 8230  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cz 11254  cuz 11563  [,)cico 12048  lim supclsp 14049  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  mbflimlem  23240
  Copyright terms: Public domain W3C validator