Proof of Theorem erdszelem5
Step | Hyp | Ref
| Expression |
1 | | erdsze.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | erdsze.f |
. . . 4
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
3 | | erdszelem.k |
. . . 4
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((# “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
4 | 1, 2, 3 | erdszelem3 30429 |
. . 3
⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
5 | 4 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) = sup((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
6 | | snex 4835 |
. . . . . 6
⊢ {𝐴} ∈ V |
7 | | hashf 12987 |
. . . . . . 7
⊢
#:V⟶(ℕ0 ∪ {+∞}) |
8 | 7 | fdmi 5965 |
. . . . . 6
⊢ dom # =
V |
9 | 6, 8 | eleqtrri 2687 |
. . . . 5
⊢ {𝐴} ∈ dom # |
10 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
11 | 1, 2, 3, 10 | erdszelem4 30430 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) |
12 | | inelcm 3984 |
. . . . 5
⊢ (({𝐴} ∈ dom # ∧ {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → (dom # ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
13 | 9, 11, 12 | sylancr 694 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (dom # ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
14 | | imadisj 5403 |
. . . . 5
⊢ ((#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) = ∅ ↔ (dom # ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) = ∅) |
15 | 14 | necon3bii 2834 |
. . . 4
⊢ ((#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ↔ (dom # ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
16 | 13, 15 | sylibr 223 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
17 | | eqid 2610 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
18 | 17 | erdszelem2 30428 |
. . . . 5
⊢ ((#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℕ) |
19 | 18 | simpli 473 |
. . . 4
⊢ (#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin |
20 | 18 | simpri 477 |
. . . . 5
⊢ (#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℕ |
21 | | nnssre 10901 |
. . . . 5
⊢ ℕ
⊆ ℝ |
22 | 20, 21 | sstri 3577 |
. . . 4
⊢ (#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ |
23 | | ltso 9997 |
. . . . 5
⊢ < Or
ℝ |
24 | | fisupcl 8258 |
. . . . 5
⊢ (( <
Or ℝ ∧ ((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ)) → sup((# “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
25 | 23, 24 | mpan 702 |
. . . 4
⊢ (((#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ) → sup((# “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
26 | 19, 22, 25 | mp3an13 1407 |
. . 3
⊢ ((#
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ → sup((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
27 | 16, 26 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → sup((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
28 | 5, 27 | eqeltrd 2688 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |