Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iundomg | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
iundomg.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑𝑚 𝐵) ∈ AC 𝐴) |
iundomg.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
iundomg.4 | ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
iundomg | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunfo.1 | . . . . 5 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | iundomg.2 | . . . . 5 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑𝑚 𝐵) ∈ AC 𝐴) | |
3 | iundomg.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) | |
4 | 1, 2, 3 | iundom2g 9241 | . . . 4 ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |
5 | iundomg.4 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) | |
6 | acndom2 8760 | . . . 4 ⊢ (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 4, 5, 6 | sylc 63 | . . 3 ⊢ (𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
8 | 1 | iunfo 9240 | . . 3 ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 |
9 | fodomacn 8762 | . . 3 ⊢ (𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ((2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇)) | |
10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇) |
11 | domtr 7895 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ (𝐴 × 𝐶)) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | |
12 | 10, 4, 11 | syl2anc 691 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {csn 4125 ∪ ciun 4455 class class class wbr 4583 × cxp 5036 ↾ cres 5040 –onto→wfo 5802 (class class class)co 6549 2nd c2nd 7058 ↑𝑚 cmap 7744 ≼ cdom 7839 AC wacn 8647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-dom 7843 df-acn 8651 |
This theorem is referenced by: iundom 9243 iunctb 9275 |
Copyright terms: Public domain | W3C validator |