MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   GIF version

Theorem acnlem 8754
Description: Construct a mapping satisfying the consequent of isacn 8750. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝐵,𝑔
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 6127 . . . . . 6 (𝑓𝑥) ⊆ ran 𝑓
2 simpr 476 . . . . . 6 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ∈ (𝑓𝑥))
31, 2sseldi 3566 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ran 𝑓)
43ralimiaa 2935 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝐵 ran 𝑓)
5 eqid 2610 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65fmpt 6289 . . . 4 (∀𝑥𝐴 𝐵 ran 𝑓 ↔ (𝑥𝐴𝐵):𝐴 ran 𝑓)
74, 6sylib 207 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → (𝑥𝐴𝐵):𝐴 ran 𝑓)
8 id 22 . . 3 (𝐴𝑉𝐴𝑉)
9 vex 3176 . . . . . 6 𝑓 ∈ V
109rnex 6992 . . . . 5 ran 𝑓 ∈ V
1110uniex 6851 . . . 4 ran 𝑓 ∈ V
12 fex2 7014 . . . 4 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉 ran 𝑓 ∈ V) → (𝑥𝐴𝐵) ∈ V)
1311, 12mp3an3 1405 . . 3 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉) → (𝑥𝐴𝐵) ∈ V)
147, 8, 13syl2anr 494 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → (𝑥𝐴𝐵) ∈ V)
155fvmpt2 6200 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615, 2eqeltrd 2688 . . . 4 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1716ralimiaa 2935 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1817adantl 481 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
19 nfmpt1 4675 . . . . 5 𝑥(𝑥𝐴𝐵)
2019nfeq2 2766 . . . 4 𝑥 𝑔 = (𝑥𝐴𝐵)
21 fveq1 6102 . . . . 5 (𝑔 = (𝑥𝐴𝐵) → (𝑔𝑥) = ((𝑥𝐴𝐵)‘𝑥))
2221eleq1d 2672 . . . 4 (𝑔 = (𝑥𝐴𝐵) → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2320, 22ralbid 2966 . . 3 (𝑔 = (𝑥𝐴𝐵) → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2423spcegv 3267 . 2 ((𝑥𝐴𝐵) ∈ V → (∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
2514, 18, 24sylc 63 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  Vcvv 3173   cuni 4372  cmpt 4643  ran crn 5039  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by:  numacn  8755  acndom  8757  acndom2  8760
  Copyright terms: Public domain W3C validator