MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Unicode version

Theorem acnlem 8420
Description: Construct a mapping satisfying the consequent of isacn 8416. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Distinct variable groups:    f, g, x, A    B, g
Allowed substitution hints:    B( x, f)    V( x, f, g)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 5871 . . . . . 6  |-  ( f `
 x )  C_  U.
ran  f
2 simpr 459 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  ( f `  x ) )
31, 2sseldi 3487 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  U. ran  f
)
43ralimiaa 2846 . . . 4  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  B  e.  U.
ran  f )
5 eqid 2454 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65fmpt 6028 . . . 4  |-  ( A. x  e.  A  B  e.  U. ran  f  <->  ( x  e.  A  |->  B ) : A --> U. ran  f )
74, 6sylib 196 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  ( x  e.  A  |->  B ) : A --> U. ran  f )
8 id 22 . . 3  |-  ( A  e.  V  ->  A  e.  V )
9 vex 3109 . . . . . 6  |-  f  e. 
_V
109rnex 6707 . . . . 5  |-  ran  f  e.  _V
1110uniex 6569 . . . 4  |-  U. ran  f  e.  _V
12 fex2 6728 . . . 4  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V  /\  U. ran  f  e.  _V )  ->  ( x  e.  A  |->  B )  e.  _V )
1311, 12mp3an3 1311 . . 3  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V )  ->  (
x  e.  A  |->  B )  e.  _V )
147, 8, 13syl2anr 476 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  (
x  e.  A  |->  B )  e.  _V )
155fvmpt2 5939 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
1615, 2eqeltrd 2542 . . . 4  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1716ralimiaa 2846 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1817adantl 464 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
19 nfmpt1 4528 . . . . 5  |-  F/_ x
( x  e.  A  |->  B )
2019nfeq2 2633 . . . 4  |-  F/ x  g  =  ( x  e.  A  |->  B )
21 fveq1 5847 . . . . 5  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( g `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
2221eleq1d 2523 . . . 4  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( ( g `  x )  e.  ( f `  x )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2320, 22ralbid 2888 . . 3  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2423spcegv 3192 . 2  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
2514, 18, 24sylc 60 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   A.wral 2804   _Vcvv 3106   U.cuni 4235    |-> cmpt 4497   ran crn 4989   -->wf 5566   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578
This theorem is referenced by:  numacn  8421  acndom  8423  acndom2  8426
  Copyright terms: Public domain W3C validator