MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   Unicode version

Theorem acnlem 8497
Description: Construct a mapping satisfying the consequent of isacn 8493. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Distinct variable groups:    f, g, x, A    B, g
Allowed substitution hints:    B( x, f)    V( x, f, g)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 5902 . . . . . 6  |-  ( f `
 x )  C_  U.
ran  f
2 simpr 468 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  ( f `  x ) )
31, 2sseldi 3416 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  U. ran  f
)
43ralimiaa 2795 . . . 4  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  B  e.  U.
ran  f )
5 eqid 2471 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65fmpt 6058 . . . 4  |-  ( A. x  e.  A  B  e.  U. ran  f  <->  ( x  e.  A  |->  B ) : A --> U. ran  f )
74, 6sylib 201 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  ( x  e.  A  |->  B ) : A --> U. ran  f )
8 id 22 . . 3  |-  ( A  e.  V  ->  A  e.  V )
9 vex 3034 . . . . . 6  |-  f  e. 
_V
109rnex 6746 . . . . 5  |-  ran  f  e.  _V
1110uniex 6606 . . . 4  |-  U. ran  f  e.  _V
12 fex2 6767 . . . 4  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V  /\  U. ran  f  e.  _V )  ->  ( x  e.  A  |->  B )  e.  _V )
1311, 12mp3an3 1379 . . 3  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V )  ->  (
x  e.  A  |->  B )  e.  _V )
147, 8, 13syl2anr 486 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  (
x  e.  A  |->  B )  e.  _V )
155fvmpt2 5972 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
1615, 2eqeltrd 2549 . . . 4  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1716ralimiaa 2795 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1817adantl 473 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
19 nfmpt1 4485 . . . . 5  |-  F/_ x
( x  e.  A  |->  B )
2019nfeq2 2627 . . . 4  |-  F/ x  g  =  ( x  e.  A  |->  B )
21 fveq1 5878 . . . . 5  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( g `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
2221eleq1d 2533 . . . 4  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( ( g `  x )  e.  ( f `  x )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2320, 22ralbid 2826 . . 3  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2423spcegv 3121 . 2  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
2514, 18, 24sylc 61 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   _Vcvv 3031   U.cuni 4190    |-> cmpt 4454   ran crn 4840   -->wf 5585   ` cfv 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597
This theorem is referenced by:  numacn  8498  acndom  8500  acndom2  8503
  Copyright terms: Public domain W3C validator