MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni2 Structured version   Visualization version   GIF version

Theorem acni2 8752
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝑔,𝐴   𝐵,𝑔   𝑔,𝑋,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem acni2
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4260 . . . . . . 7 (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅))
2 elpw2g 4754 . . . . . . . 8 (𝑋AC 𝐴 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
32anbi1d 737 . . . . . . 7 (𝑋AC 𝐴 → ((𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅) ↔ (𝐵𝑋𝐵 ≠ ∅)))
41, 3syl5bb 271 . . . . . 6 (𝑋AC 𝐴 → (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵𝑋𝐵 ≠ ∅)))
54ralbidv 2969 . . . . 5 (𝑋AC 𝐴 → (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)))
65biimpar 501 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}))
7 eqid 2610 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87fmpt 6289 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
96, 8sylib 207 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
10 acni 8751 . . 3 ((𝑋AC 𝐴 ∧ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
119, 10syldan 486 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
12 nffvmpt1 6111 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
1312nfel2 2767 . . . . 5 𝑥(𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦)
14 nfv 1830 . . . . 5 𝑦(𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)
15 fveq2 6103 . . . . . 6 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
16 fveq2 6103 . . . . . 6 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1715, 16eleq12d 2682 . . . . 5 (𝑦 = 𝑥 → ((𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)))
1813, 14, 17cbvral 3143 . . . 4 (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥))
19 simplr 788 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅))
20 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑥𝐴)
21 simpll 786 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑋AC 𝐴)
22 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵𝑋)
2321, 22ssexd 4733 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵 ∈ V)
247fvmpt2 6200 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2520, 23, 24syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2625eleq2d 2673 . . . . . . . . . . . . . . . 16 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
2726ex 449 . . . . . . . . . . . . . . 15 ((𝑋AC 𝐴𝑥𝐴) → (𝐵𝑋 → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2827adantrd 483 . . . . . . . . . . . . . 14 ((𝑋AC 𝐴𝑥𝐴) → ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2928ralimdva 2945 . . . . . . . . . . . . 13 (𝑋AC 𝐴 → (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
3029imp 444 . . . . . . . . . . . 12 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
31 ralbi 3050 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3230, 31syl 17 . . . . . . . . . . 11 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3332biimpa 500 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
34 ssel 3562 . . . . . . . . . . . 12 (𝐵𝑋 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3534adantr 480 . . . . . . . . . . 11 ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3635ral2imi 2931 . . . . . . . . . 10 (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋))
3719, 33, 36sylc 63 . . . . . . . . 9 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋)
38 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
3938eleq1d 2672 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑋 ↔ (𝑓𝑦) ∈ 𝑋))
4039rspccva 3281 . . . . . . . . 9 ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
4137, 40sylan 487 . . . . . . . 8 ((((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
42 eqid 2610 . . . . . . . 8 (𝑦𝐴 ↦ (𝑓𝑦)) = (𝑦𝐴 ↦ (𝑓𝑦))
4341, 42fmptd 6292 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋)
44 simpll 786 . . . . . . . 8 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝑋AC 𝐴)
45 acnrcl 8748 . . . . . . . 8 (𝑋AC 𝐴𝐴 ∈ V)
4644, 45syl 17 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝐴 ∈ V)
47 fex2 7014 . . . . . . 7 (((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋𝐴 ∈ V ∧ 𝑋AC 𝐴) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
4843, 46, 44, 47syl3anc 1318 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
49 fvex 6113 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
5015, 42, 49fvmpt 6191 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) = (𝑓𝑥))
5150eleq1d 2672 . . . . . . . . 9 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ (𝑓𝑥) ∈ 𝐵))
5251ralbiia 2962 . . . . . . . 8 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
5333, 52sylibr 223 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)
5443, 53jca 553 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
55 feq1 5939 . . . . . . . 8 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔:𝐴𝑋 ↔ (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋))
56 fveq1 6102 . . . . . . . . . 10 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔𝑥) = ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥))
5756eleq1d 2672 . . . . . . . . 9 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔𝑥) ∈ 𝐵 ↔ ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5857ralbidv 2969 . . . . . . . 8 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5955, 58anbi12d 743 . . . . . . 7 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) ↔ ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)))
6059spcegv 3267 . . . . . 6 ((𝑦𝐴 ↦ (𝑓𝑦)) ∈ V → (((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6148, 54, 60sylc 63 . . . . 5 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
6261ex 449 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6318, 62syl5bi 231 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6463exlimdv 1848 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6511, 64mpd 15 1 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cmpt 4643  wf 5800  cfv 5804  AC wacn 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-acn 8651
This theorem is referenced by:  acni3  8753  acndom  8757  acnnum  8758  acndom2  8760  dfacacn  8846
  Copyright terms: Public domain W3C validator