Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Visualization version   GIF version

Theorem acnnum 8758
 Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)

Proof of Theorem acnnum
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4776 . . . . . . 7 (𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V)
2 difss 3699 . . . . . . 7 (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋
3 ssdomg 7887 . . . . . . 7 (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋))
41, 2, 3mpisyl 21 . . . . . 6 (𝑋AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)
5 acndom 8757 . . . . . 6 ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅})))
64, 5mpcom 37 . . . . 5 (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅}))
7 eldifsn 4260 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅))
8 elpwi 4117 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
98anim1i 590 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑥𝑋𝑥 ≠ ∅))
107, 9sylbi 206 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥𝑋𝑥 ≠ ∅))
1110rgen 2906 . . . . 5 𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)
12 acni2 8752 . . . . 5 ((𝑋AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
136, 11, 12sylancl 693 . . . 4 (𝑋AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
14 simpr 476 . . . . . 6 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥)
157imbi1i 338 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥))
16 impexp 461 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1715, 16bitri 263 . . . . . . 7 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1817ralbii2 2961 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1914, 18sylib 207 . . . . 5 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2019eximi 1752 . . . 4 (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2113, 20syl 17 . . 3 (𝑋AC 𝒫 𝑋 → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
22 dfac8a 8736 . . 3 (𝑋AC 𝒫 𝑋 → (∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝑋 ∈ dom card))
2321, 22mpd 15 . 2 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
24 pwexg 4776 . . 3 (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
25 numacn 8755 . . 3 (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋))
2624, 25mpcom 37 . 2 (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋)
2723, 26impbii 198 1 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  ⟶wf 5800  ‘cfv 5804   ≼ cdom 7839  cardccrd 8644  AC wacn 8647 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-card 8648  df-acn 8651 This theorem is referenced by:  dfac13  8847
 Copyright terms: Public domain W3C validator