MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Visualization version   GIF version

Theorem dfacacn 8846
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn (CHOICE ↔ ∀𝑥AC 𝑥 = V)

Proof of Theorem dfacacn
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . 4 𝑥 ∈ V
2 acacni 8845 . . . 4 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
31, 2mpan2 703 . . 3 (CHOICEAC 𝑥 = V)
43alrimiv 1842 . 2 (CHOICE → ∀𝑥AC 𝑥 = V)
5 vex 3176 . . . . . . 7 𝑦 ∈ V
6 difexg 4735 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∖ {∅}) ∈ V)
75, 6ax-mp 5 . . . . . 6 (𝑦 ∖ {∅}) ∈ V
8 acneq 8749 . . . . . . 7 (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅}))
98eqeq1d 2612 . . . . . 6 (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) = V))
107, 9spcv 3272 . . . . 5 (∀𝑥AC 𝑥 = V → AC (𝑦 ∖ {∅}) = V)
11 vuniex 6852 . . . . . . 7 𝑦 ∈ V
12 id 22 . . . . . . 7 (AC (𝑦 ∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V)
1311, 12syl5eleqr 2695 . . . . . 6 (AC (𝑦 ∖ {∅}) = V → 𝑦AC (𝑦 ∖ {∅}))
14 eldifi 3694 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧𝑦)
15 elssuni 4403 . . . . . . . . 9 (𝑧𝑦𝑧 𝑦)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 𝑦)
17 eldifsni 4261 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅)
1816, 17jca 553 . . . . . . 7 (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 𝑦𝑧 ≠ ∅))
1918rgen 2906 . . . . . 6 𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)
20 acni2 8752 . . . . . 6 (( 𝑦AC (𝑦 ∖ {∅}) ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)) → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
2113, 19, 20sylancl 693 . . . . 5 (AC (𝑦 ∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
225mptex 6390 . . . . . . 7 (𝑥𝑦 ↦ (𝑔𝑥)) ∈ V
23 simpr 476 . . . . . . . . 9 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧)
24 eldifsn 4260 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧𝑦𝑧 ≠ ∅))
2524imbi1i 338 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
26 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
27 eqid 2610 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↦ (𝑔𝑥)) = (𝑥𝑦 ↦ (𝑔𝑥))
28 fvex 6113 . . . . . . . . . . . . . . 15 (𝑔𝑧) ∈ V
2926, 27, 28fvmpt 6191 . . . . . . . . . . . . . 14 (𝑧𝑦 → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
3014, 29syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
3130eleq1d 2672 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔𝑧) ∈ 𝑧))
3231pm5.74i 259 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧))
33 impexp 461 . . . . . . . . . . 11 (((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3425, 32, 333bitr3i 289 . . . . . . . . . 10 ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3534ralbii2 2961 . . . . . . . . 9 (∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
3623, 35sylib 207 . . . . . . . 8 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
37 fvrn0 6126 . . . . . . . . . . 11 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3837rgenw 2908 . . . . . . . . . 10 𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3927fmpt 6289 . . . . . . . . . 10 (∀𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}))
4038, 39mpbi 219 . . . . . . . . 9 (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})
41 ffn 5958 . . . . . . . . 9 ((𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦)
4240, 41ax-mp 5 . . . . . . . 8 (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦
4336, 42jctil 558 . . . . . . 7 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
44 fneq1 5893 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦))
45 fveq1 6102 . . . . . . . . . . . 12 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓𝑧) = ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧))
4645eleq1d 2672 . . . . . . . . . . 11 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
4746imbi2d 329 . . . . . . . . . 10 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4847ralbidv 2969 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4944, 48anbi12d 743 . . . . . . . 8 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))))
5049spcegv 3267 . . . . . . 7 ((𝑥𝑦 ↦ (𝑔𝑥)) ∈ V → (((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
5122, 43, 50mpsyl 66 . . . . . 6 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5251exlimiv 1845 . . . . 5 (∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5310, 21, 523syl 18 . . . 4 (∀𝑥AC 𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5453alrimiv 1842 . . 3 (∀𝑥AC 𝑥 = V → ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
55 dfac4 8828 . . 3 (CHOICE ↔ ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5654, 55sylibr 223 . 2 (∀𝑥AC 𝑥 = V → CHOICE)
574, 56impbii 198 1 (CHOICE ↔ ∀𝑥AC 𝑥 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125   cuni 4372  cmpt 4643  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  AC wacn 8647  CHOICEwac 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-card 8648  df-acn 8651  df-ac 8822
This theorem is referenced by:  dfac13  8847
  Copyright terms: Public domain W3C validator