MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Unicode version

Theorem dfacacn 8538
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn  |-  (CHOICE  <->  A. xAC  x  =  _V )

Proof of Theorem dfacacn
Dummy variables  f 
g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . 4  |-  x  e. 
_V
2 acacni 8537 . . . 4  |-  ( (CHOICE  /\  x  e.  _V )  -> AC  x  =  _V )
31, 2mpan2 671 . . 3  |-  (CHOICE  -> AC  x  =  _V )
43alrimiv 1720 . 2  |-  (CHOICE  ->  A. xAC  x  =  _V )
5 vex 3112 . . . . . . 7  |-  y  e. 
_V
6 difexg 4604 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  \  { (/) } )  e.  _V )
75, 6ax-mp 5 . . . . . 6  |-  ( y 
\  { (/) } )  e.  _V
8 acneq 8441 . . . . . . 7  |-  ( x  =  ( y  \  { (/) } )  -> AC  x  = AC  ( y  \  { (/)
} ) )
98eqeq1d 2459 . . . . . 6  |-  ( x  =  ( y  \  { (/) } )  -> 
(AC  x  =  _V  <-> AC  (
y  \  { (/) } )  =  _V ) )
107, 9spcv 3200 . . . . 5  |-  ( A. xAC  x  =  _V  -> AC  (
y  \  { (/) } )  =  _V )
115uniex 6595 . . . . . . 7  |-  U. y  e.  _V
12 id 22 . . . . . . 7  |-  (AC  (
y  \  { (/) } )  =  _V  -> AC  ( y 
\  { (/) } )  =  _V )
1311, 12syl5eleqr 2552 . . . . . 6  |-  (AC  (
y  \  { (/) } )  =  _V  ->  U. y  e. AC  ( y  \  { (/)
} ) )
14 eldifi 3622 . . . . . . . . 9  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  e.  y )
15 elssuni 4281 . . . . . . . . 9  |-  ( z  e.  y  ->  z  C_ 
U. y )
1614, 15syl 16 . . . . . . . 8  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  C_  U. y
)
17 eldifsni 4158 . . . . . . . 8  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  =/=  (/) )
1816, 17jca 532 . . . . . . 7  |-  ( z  e.  ( y  \  { (/) } )  -> 
( z  C_  U. y  /\  z  =/=  (/) ) )
1918rgen 2817 . . . . . 6  |-  A. z  e.  ( y  \  { (/)
} ) ( z 
C_  U. y  /\  z  =/=  (/) )
20 acni2 8444 . . . . . 6  |-  ( ( U. y  e. AC  ( y 
\  { (/) } )  /\  A. z  e.  ( y  \  { (/)
} ) ( z 
C_  U. y  /\  z  =/=  (/) ) )  ->  E. g ( g : ( y  \  { (/)
} ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z ) )
2113, 19, 20sylancl 662 . . . . 5  |-  (AC  (
y  \  { (/) } )  =  _V  ->  E. g
( g : ( y  \  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z ) )
225mptex 6144 . . . . . . 7  |-  ( x  e.  y  |->  ( g `
 x ) )  e.  _V
23 simpr 461 . . . . . . . . 9  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  A. z  e.  (
y  \  { (/) } ) ( g `  z
)  e.  z )
24 eldifsn 4157 . . . . . . . . . . . 12  |-  ( z  e.  ( y  \  { (/) } )  <->  ( z  e.  y  /\  z  =/=  (/) ) )
2524imbi1i 325 . . . . . . . . . . 11  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z )  <->  ( (
z  e.  y  /\  z  =/=  (/) )  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) )
26 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
g `  x )  =  ( g `  z ) )
27 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( x  e.  y  |->  ( g `
 x ) )  =  ( x  e.  y  |->  ( g `  x ) )
28 fvex 5882 . . . . . . . . . . . . . . 15  |-  ( g `
 z )  e. 
_V
2926, 27, 28fvmpt 5956 . . . . . . . . . . . . . 14  |-  ( z  e.  y  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  =  ( g `
 z ) )
3014, 29syl 16 . . . . . . . . . . . . 13  |-  ( z  e.  ( y  \  { (/) } )  -> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  =  ( g `  z ) )
3130eleq1d 2526 . . . . . . . . . . . 12  |-  ( z  e.  ( y  \  { (/) } )  -> 
( ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z  <->  ( g `  z )  e.  z ) )
3231pm5.74i 245 . . . . . . . . . . 11  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z )  <->  ( z  e.  ( y  \  { (/)
} )  ->  (
g `  z )  e.  z ) )
33 impexp 446 . . . . . . . . . . 11  |-  ( ( ( z  e.  y  /\  z  =/=  (/) )  -> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  e.  z )  <->  ( z  e.  y  ->  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
3425, 32, 333bitr3i 275 . . . . . . . . . 10  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( g `  z )  e.  z )  <->  ( z  e.  y  ->  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
3534ralbii2 2886 . . . . . . . . 9  |-  ( A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z  <->  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )
3623, 35sylib 196 . . . . . . . 8  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  A. z  e.  y 
( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) )
37 fvrn0 5894 . . . . . . . . . . 11  |-  ( g `
 x )  e.  ( ran  g  u. 
{ (/) } )
3837rgenw 2818 . . . . . . . . . 10  |-  A. x  e.  y  ( g `  x )  e.  ( ran  g  u.  { (/)
} )
3927fmpt 6053 . . . . . . . . . 10  |-  ( A. x  e.  y  (
g `  x )  e.  ( ran  g  u. 
{ (/) } )  <->  ( x  e.  y  |->  ( g `
 x ) ) : y --> ( ran  g  u.  { (/) } ) )
4038, 39mpbi 208 . . . . . . . . 9  |-  ( x  e.  y  |->  ( g `
 x ) ) : y --> ( ran  g  u.  { (/) } )
41 ffn 5737 . . . . . . . . 9  |-  ( ( x  e.  y  |->  ( g `  x ) ) : y --> ( ran  g  u.  { (/)
} )  ->  (
x  e.  y  |->  ( g `  x ) )  Fn  y )
4240, 41ax-mp 5 . . . . . . . 8  |-  ( x  e.  y  |->  ( g `
 x ) )  Fn  y
4336, 42jctil 537 . . . . . . 7  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  -> 
( ( x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
44 fneq1 5675 . . . . . . . . 9  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( f  Fn  y  <->  ( x  e.  y  |->  ( g `  x ) )  Fn  y ) )
45 fveq1 5871 . . . . . . . . . . . 12  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( f `  z
)  =  ( ( x  e.  y  |->  ( g `  x ) ) `  z ) )
4645eleq1d 2526 . . . . . . . . . . 11  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )
4746imbi2d 316 . . . . . . . . . 10  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z ) ) )
4847ralbidv 2896 . . . . . . . . 9  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  y  ( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) ) )
4944, 48anbi12d 710 . . . . . . . 8  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) ) ) )
5049spcegv 3195 . . . . . . 7  |-  ( ( x  e.  y  |->  ( g `  x ) )  e.  _V  ->  ( ( ( x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )  ->  E. f ( f  Fn  y  /\  A. z  e.  y  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) ) )
5122, 43, 50mpsyl 63 . . . . . 6  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5251exlimiv 1723 . . . . 5  |-  ( E. g ( g : ( y  \  { (/)
} ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  E. f
( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
5310, 21, 523syl 20 . . . 4  |-  ( A. xAC  x  =  _V  ->  E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5453alrimiv 1720 . . 3  |-  ( A. xAC  x  =  _V  ->  A. y E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
55 dfac4 8520 . . 3  |-  (CHOICE  <->  A. y E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5654, 55sylibr 212 . 2  |-  ( A. xAC  x  =  _V  -> CHOICE )
574, 56impbii 188 1  |-  (CHOICE  <->  A. xAC  x  =  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   _Vcvv 3109    \ cdif 3468    u. cun 3469    C_ wss 3471   (/)c0 3793   {csn 4032   U.cuni 4251    |-> cmpt 4515   ran crn 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594  AC wacn 8336  CHOICEwac 8513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-recs 7060  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-card 8337  df-acn 8340  df-ac 8514
This theorem is referenced by:  dfac13  8539
  Copyright terms: Public domain W3C validator