MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6126
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 3739 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 4718 . . . . 5 ∅ ∈ V
43snid 4155 . . . 4 ∅ ∈ {∅}
52, 4sselii 3565 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5syl6eqel 2696 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 3738 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6097 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 143 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvex 6113 . . . . 5 (𝐹𝑋) ∈ V
1110a1i 11 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
12 fvbr0 6125 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1312ori 389 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1413con1i 143 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
15 brelrng 5276 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
169, 11, 14, 15syl3anc 1318 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
177, 16sseldi 3566 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
186, 17pm2.61i 175 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  c0 3874  {csn 4125   class class class wbr 4583  ran crn 5039  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049  df-iota 5768  df-fv 5812
This theorem is referenced by:  fvssunirn  6127  dfac4  8828  dfac2  8836  dfacacn  8846  axdc2lem  9153  axcclem  9162  plusffval  17070  staffval  18670  scaffval  18704  lpival  19066  ipffval  19812  nmfval  22203  tchex  22824  tchnmfval  22835  orderseqlem  30993  rrnval  32796  lsatset  33295  fvnonrel  36922
  Copyright terms: Public domain W3C validator