MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 18704
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffval = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2662 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6107 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2662 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6103 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
9 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
108, 9syl6eqr 2662 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
11 fveq2 6103 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
12 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1311, 12syl6eqr 2662 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1413oveqd 6566 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
157, 10, 14mpt2eq123dv 6615 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
16 df-scaf 18689 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
17 df-ov 6552 . . . . . . . 8 (𝑥 · 𝑦) = ( · ‘⟨𝑥, 𝑦⟩)
18 fvrn0 6126 . . . . . . . 8 ( · ‘⟨𝑥, 𝑦⟩) ∈ (ran · ∪ {∅})
1917, 18eqeltri 2684 . . . . . . 7 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2019rgen2w 2909 . . . . . 6 𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
21 eqid 2610 . . . . . . 7 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
2221fmpt2 7126 . . . . . 6 (∀𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅}) ↔ (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅}))
2320, 22mpbi 219 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅})
24 fvex 6113 . . . . . . 7 (Base‘𝐹) ∈ V
256, 24eqeltri 2684 . . . . . 6 𝐾 ∈ V
26 fvex 6113 . . . . . . 7 (Base‘𝑊) ∈ V
279, 26eqeltri 2684 . . . . . 6 𝐵 ∈ V
2825, 27xpex 6860 . . . . 5 (𝐾 × 𝐵) ∈ V
29 fvex 6113 . . . . . . . 8 ( ·𝑠𝑊) ∈ V
3012, 29eqeltri 2684 . . . . . . 7 · ∈ V
3130rnex 6992 . . . . . 6 ran · ∈ V
32 p0ex 4779 . . . . . 6 {∅} ∈ V
3331, 32unex 6854 . . . . 5 (ran · ∪ {∅}) ∈ V
34 fex2 7014 . . . . 5 (((𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅}) ∧ (𝐾 × 𝐵) ∈ V ∧ (ran · ∪ {∅}) ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3523, 28, 33, 34mp3an 1416 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V
3615, 16, 35fvmpt 6191 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
37 fvprc 6097 . . . . 5 𝑊 ∈ V → ( ·sf𝑊) = ∅)
38 mpt20 6623 . . . . 5 (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅
3937, 38syl6eqr 2662 . . . 4 𝑊 ∈ V → ( ·sf𝑊) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
40 fvprc 6097 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
413, 40syl5eq 2656 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
4241fveq2d 6107 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
436, 42syl5eq 2656 . . . . . 6 𝑊 ∈ V → 𝐾 = (Base‘∅))
44 base0 15740 . . . . . 6 ∅ = (Base‘∅)
4543, 44syl6eqr 2662 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
46 eqid 2610 . . . . 5 𝐵 = 𝐵
47 mpt2eq12 6613 . . . . 5 ((𝐾 = ∅ ∧ 𝐵 = 𝐵) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
4845, 46, 47sylancl 693 . . . 4 𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
4939, 48eqtr4d 2647 . . 3 𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
5036, 49pm2.61i 175 . 2 ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
511, 50eqtri 2632 1 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  c0 3874  {csn 4125  cop 4131   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772   ·sf cscaf 18687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-slot 15699  df-base 15700  df-scaf 18689
This theorem is referenced by:  scafval  18705  scafeq  18706  scaffn  18707  lmodscaf  18708  rlmscaf  19029
  Copyright terms: Public domain W3C validator