MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 19812
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6103 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3syl6eqr 2662 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6103 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6syl6eqr 2662 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 6566 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpt2eq123dv 6615 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 19791 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
11 df-ov 6552 . . . . . . . 8 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
12 fvrn0 6126 . . . . . . . 8 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1311, 12eqeltri 2684 . . . . . . 7 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1413rgen2w 2909 . . . . . 6 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
15 eqid 2610 . . . . . . 7 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
1615fmpt2 7126 . . . . . 6 (∀𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) ↔ (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}))
1714, 16mpbi 219 . . . . 5 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅})
18 fvex 6113 . . . . . . 7 (Base‘𝑊) ∈ V
193, 18eqeltri 2684 . . . . . 6 𝑉 ∈ V
2019, 19xpex 6860 . . . . 5 (𝑉 × 𝑉) ∈ V
21 fvex 6113 . . . . . . . 8 (·𝑖𝑊) ∈ V
226, 21eqeltri 2684 . . . . . . 7 , ∈ V
2322rnex 6992 . . . . . 6 ran , ∈ V
24 p0ex 4779 . . . . . 6 {∅} ∈ V
2523, 24unex 6854 . . . . 5 (ran , ∪ {∅}) ∈ V
26 fex2 7014 . . . . 5 (((𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}) ∧ (𝑉 × 𝑉) ∈ V ∧ (ran , ∪ {∅}) ∈ V) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V)
2717, 20, 25, 26mp3an 1416 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
289, 10, 27fvmpt 6191 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
29 fvprc 6097 . . . . 5 𝑊 ∈ V → (·if𝑊) = ∅)
30 mpt20 6623 . . . . 5 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)) = ∅
3129, 30syl6eqr 2662 . . . 4 𝑊 ∈ V → (·if𝑊) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
32 fvprc 6097 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
333, 32syl5eq 2656 . . . . 5 𝑊 ∈ V → 𝑉 = ∅)
34 mpt2eq12 6613 . . . . 5 ((𝑉 = ∅ ∧ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
3533, 33, 34syl2anc 691 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
3631, 35eqtr4d 2647 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
3728, 36pm2.61i 175 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
381, 37eqtri 2632 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  c0 3874  {csn 4125  cop 4131   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  ·𝑖cip 15773  ·ifcipf 19789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-ipf 19791
This theorem is referenced by:  ipfval  19813  ipfeq  19814  ipffn  19815  phlipf  19816  phssip  19822
  Copyright terms: Public domain W3C validator