MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2 Structured version   Visualization version   GIF version

Theorem aaliou2 23899
Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
aaliou2 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . 2 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 elaa 23875 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0))
3 eldifn 3695 . . . . . . . . . . . 12 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ¬ 𝑎 ∈ {0𝑝})
433ad2ant1 1075 . . . . . . . . . . 11 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈ {0𝑝})
5 simpr 476 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)}))
6 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
76adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
8 simpl2 1058 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = 0)
9 simpl3 1059 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ)
109recnd 9947 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ)
11 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝑎‘0) ∈ V
1211fvconst2 6374 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
1310, 12syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
147, 8, 133eqtr3rd 2653 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0)
1514sneqd 4137 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0})
1615xpeq2d 5063 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ × {0}))
175, 16eqtrd 2644 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0}))
18 df-0p 23243 . . . . . . . . . . . . 13 0𝑝 = (ℂ × {0})
1917, 18syl6eqr 2662 . . . . . . . . . . . 12 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝)
20 velsn 4141 . . . . . . . . . . . 12 (𝑎 ∈ {0𝑝} ↔ 𝑎 = 0𝑝)
2119, 20sylibr 223 . . . . . . . . . . 11 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈ {0𝑝})
224, 21mtand 689 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)}))
23 eldifi 3694 . . . . . . . . . . . 12 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℤ))
24233ad2ant1 1075 . . . . . . . . . . 11 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈ (Poly‘ℤ))
25 0dgrb 23806 . . . . . . . . . . 11 (𝑎 ∈ (Poly‘ℤ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2624, 25syl 17 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2722, 26mtbird 314 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ (deg‘𝑎) = 0)
28 dgrcl 23793 . . . . . . . . . . 11 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
2924, 28syl 17 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ0)
30 elnn0 11171 . . . . . . . . . 10 ((deg‘𝑎) ∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
3129, 30sylib 207 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
32 orel2 397 . . . . . . . . 9 (¬ (deg‘𝑎) = 0 → (((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0) → (deg‘𝑎) ∈ ℕ))
3327, 31, 32sylc 63 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ)
34 eqid 2610 . . . . . . . . 9 (deg‘𝑎) = (deg‘𝑎)
35 simp3 1056 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
36 simp2 1055 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎𝐴) = 0)
3734, 24, 33, 35, 36aaliou 23897 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
38 oveq2 6557 . . . . . . . . . . . . . 14 (𝑘 = (deg‘𝑎) → (𝑞𝑘) = (𝑞↑(deg‘𝑎)))
3938oveq2d 6565 . . . . . . . . . . . . 13 (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎))))
4039breq1d 4593 . . . . . . . . . . . 12 (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4140orbi2d 734 . . . . . . . . . . 11 (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
42412ralbidv 2972 . . . . . . . . . 10 (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4342rexbidv 3034 . . . . . . . . 9 (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4443rspcev 3282 . . . . . . . 8 (((deg‘𝑎) ∈ ℕ ∧ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4533, 37, 44syl2anc 691 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
46453exp 1256 . . . . . 6 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))))
4746rexlimiv 3009 . . . . 5 (∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4847adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0) → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
492, 48sylbi 206 . . 3 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
5049imp 444 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
511, 50sylbi 206 1 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  cin 3539  {csn 4125   class class class wbr 4583   × cxp 5036  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   < clt 9953  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  +crp 11708  cexp 12722  abscabs 13822  0𝑝c0p 23242  Polycply 23744  degcdgr 23747  𝔸caa 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-dvn 23438  df-cpn 23439  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850  df-aa 23874
This theorem is referenced by:  aaliou2b  23900
  Copyright terms: Public domain W3C validator