Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3t1e3 | Structured version Visualization version GIF version |
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3t1e3 | ⊢ (3 · 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 10972 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | mulid1i 9921 | 1 ⊢ (3 · 1) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 (class class class)co 6549 1c1 9816 · cmul 9820 3c3 10948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-2 10956 df-3 10957 |
This theorem is referenced by: 3t3e9 11057 sqrlem7 13837 5prm 15653 631prm 15672 4001prm 15690 pigt3 32572 lhe4.4ex1a 37550 stoweidlem13 38906 3ndvds4 40048 |
Copyright terms: Public domain | W3C validator |