Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ffzoeq Structured version   Visualization version   GIF version

Theorem 2ffzoeq 40361
Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
2ffzoeq (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑃,𝑖
Allowed substitution hints:   𝑁(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem 2ffzoeq
StepHypRef Expression
1 eqeq1 2614 . . . . . . . . . . . 12 (𝐹 = 𝑃 → (𝐹 = ∅ ↔ 𝑃 = ∅))
21anbi1d 737 . . . . . . . . . . 11 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) ↔ (𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
3 f0bi 6001 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌𝑃 = ∅)
4 ffn 5958 . . . . . . . . . . . . . 14 (𝑃:(0..^𝑁)⟶𝑌𝑃 Fn (0..^𝑁))
5 ffn 5958 . . . . . . . . . . . . . 14 (𝑃:∅⟶𝑌𝑃 Fn ∅)
6 fndmu 5906 . . . . . . . . . . . . . . . 16 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → (0..^𝑁) = ∅)
7 0z 11265 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
8 nn0z 11277 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
98adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 fzon 12358 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
117, 9, 10sylancr 694 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
12 nn0ge0 11195 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
13 0red 9920 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
14 nn0re 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1513, 14letri3d 10058 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (0 = 𝑁 ↔ (0 ≤ 𝑁𝑁 ≤ 0)))
1615biimprd 237 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((0 ≤ 𝑁𝑁 ≤ 0) → 0 = 𝑁))
1712, 16mpand 707 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 → 0 = 𝑁))
1817adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 → 0 = 𝑁))
1911, 18sylbird 249 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) = ∅ → 0 = 𝑁))
206, 19syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
2120ex 449 . . . . . . . . . . . . . 14 (𝑃 Fn (0..^𝑁) → (𝑃 Fn ∅ → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
224, 5, 21syl2imc 40 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌 → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
233, 22sylbir 224 . . . . . . . . . . . 12 (𝑃 = ∅ → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2423imp 444 . . . . . . . . . . 11 ((𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
252, 24syl6bi 242 . . . . . . . . . 10 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2625com3l 87 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁)))
2726a1i 11 . . . . . . . 8 (𝑀 = 0 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
28 oveq2 6557 . . . . . . . . . . . 12 (𝑀 = 0 → (0..^𝑀) = (0..^0))
29 fzo0 12361 . . . . . . . . . . . 12 (0..^0) = ∅
3028, 29syl6eq 2660 . . . . . . . . . . 11 (𝑀 = 0 → (0..^𝑀) = ∅)
3130feq2d 5944 . . . . . . . . . 10 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:∅⟶𝑋))
32 f0bi 6001 . . . . . . . . . 10 (𝐹:∅⟶𝑋𝐹 = ∅)
3331, 32syl6bb 275 . . . . . . . . 9 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
3433anbi1d 737 . . . . . . . 8 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
35 eqeq1 2614 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 = 𝑁 ↔ 0 = 𝑁))
3635imbi2d 329 . . . . . . . . 9 (𝑀 = 0 → ((𝐹 = 𝑃𝑀 = 𝑁) ↔ (𝐹 = 𝑃 → 0 = 𝑁)))
3736imbi2d 329 . . . . . . . 8 (𝑀 = 0 → (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁)) ↔ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
3827, 34, 373imtr4d 282 . . . . . . 7 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁))))
3938com3l 87 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁))))
4039impcom 445 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁)))
4140impcom 445 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
4228feq2d 5944 . . . . . . . . . . . 12 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:(0..^0)⟶𝑋))
4329feq2i 5950 . . . . . . . . . . . . 13 (𝐹:(0..^0)⟶𝑋𝐹:∅⟶𝑋)
4443, 32bitri 263 . . . . . . . . . . . 12 (𝐹:(0..^0)⟶𝑋𝐹 = ∅)
4542, 44syl6bb 275 . . . . . . . . . . 11 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
4645adantr 480 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
47 eqeq1 2614 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑀 = 0 ↔ 𝑁 = 0))
4847biimpac 502 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝑁 = 0)
49 oveq2 6557 . . . . . . . . . . . . 13 (𝑁 = 0 → (0..^𝑁) = (0..^0))
5049feq2d 5944 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃:(0..^0)⟶𝑌))
5129feq2i 5950 . . . . . . . . . . . . 13 (𝑃:(0..^0)⟶𝑌𝑃:∅⟶𝑌)
5251, 3bitri 263 . . . . . . . . . . . 12 (𝑃:(0..^0)⟶𝑌𝑃 = ∅)
5350, 52syl6bb 275 . . . . . . . . . . 11 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5448, 53syl 17 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5546, 54anbi12d 743 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃 = ∅)))
56 eqtr3 2631 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃 = ∅) → 𝐹 = 𝑃)
5755, 56syl6bi 242 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → 𝐹 = 𝑃))
5857com12 32 . . . . . . 7 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝐹 = 𝑃))
5958expd 451 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6059adantl 481 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6160impcom 445 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁𝐹 = 𝑃))
6241, 61impbid 201 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
63 ral0 4028 . . . . . 6 𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)
6430raleqdv 3121 . . . . . 6 (𝑀 = 0 → (∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)))
6563, 64mpbiri 247 . . . . 5 (𝑀 = 0 → ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))
6665biantrud 527 . . . 4 (𝑀 = 0 → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6766adantr 480 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6862, 67bitrd 267 . 2 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
69 ffn 5958 . . . . . . 7 (𝐹:(0..^𝑀)⟶𝑋𝐹 Fn (0..^𝑀))
7069, 4anim12i 588 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7170adantl 481 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7271adantl 481 . . . 4 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
73 eqfnfv2 6220 . . . 4 ((𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
7472, 73syl 17 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
75 df-ne 2782 . . . . . 6 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
76 elnnne0 11183 . . . . . . . 8 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
77 0zd 11266 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ∈ ℤ)
78 nnz 11276 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
79 nngt0 10926 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 < 𝑀)
8077, 78, 793jca 1235 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
8180adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
82 fzoopth 40360 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
84 simpr 476 . . . . . . . . . . . 12 ((0 = 0 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
8583, 84syl6bi 242 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) → 𝑀 = 𝑁))
8685anim1d 586 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
87 oveq2 6557 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
8887anim1i 590 . . . . . . . . . 10 ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))
8986, 88impbid1 214 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9089ex 449 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9176, 90sylbir 224 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9291impancom 455 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ≠ 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9375, 92syl5bir 232 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9493adantr 480 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9594impcom 445 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9674, 95bitrd 267 . 2 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9768, 96pm2.61ian 827 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  c0 3874   class class class wbr 4583   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815   < clt 9953  cle 9954  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator