Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzoopth Structured version   Visualization version   GIF version

Theorem fzoopth 40360
Description: A half-open integer range can represent an ordered pair, analogous to fzopth 12249. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
fzoopth ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzoopth
StepHypRef Expression
1 simpl 472 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
2 fzolb 12345 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
31, 2sylibr 223 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
4 simpr 476 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀..^𝑁) = (𝐽..^𝐾))
53, 4eleqtrd 2690 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
6 elfzouz 12343 . . . . . . 7 (𝑀 ∈ (𝐽..^𝐾) → 𝑀 ∈ (ℤ𝐽))
7 uzss 11584 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
85, 6, 73syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
92biimpri 217 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝑀 ∈ (𝑀..^𝑁))
109adantr 480 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
11 eleq2 2677 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1211adantl 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1310, 12mpbid 221 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
14 elfzolt3b 12351 . . . . . . . . 9 (𝑀 ∈ (𝐽..^𝐾) → 𝐽 ∈ (𝐽..^𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝐽..^𝐾))
1615, 4eleqtrrd 2691 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝑀..^𝑁))
17 elfzouz 12343 . . . . . . 7 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
18 uzss 11584 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1916, 17, 183syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
208, 19eqssd 3585 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) = (ℤ𝐽))
21 simpl1 1057 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ ℤ)
22 uz11 11586 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2321, 22syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2420, 23mpbid 221 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 = 𝐽)
25 fzoend 12425 . . . . . . . . 9 (𝐽 ∈ (𝐽..^𝐾) → (𝐾 − 1) ∈ (𝐽..^𝐾))
26 elfzoel2 12338 . . . . . . . . . 10 ((𝐾 − 1) ∈ (𝐽..^𝐾) → 𝐾 ∈ ℤ)
27 eleq2 2677 . . . . . . . . . . . . . . 15 ((𝐽..^𝐾) = (𝑀..^𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
2827eqcoms 2618 . . . . . . . . . . . . . 14 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
29 elfzo2 12342 . . . . . . . . . . . . . . 15 ((𝐾 − 1) ∈ (𝑀..^𝑁) ↔ ((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁))
30 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾 ∈ ℤ)
31 simprl 790 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝑁 ∈ ℤ)
32 zlem1lt 11306 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3332ancoms 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3433biimprd 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − 1) < 𝑁𝐾𝑁))
3534impancom 455 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → 𝐾𝑁))
3635impcom 445 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾𝑁)
3730, 31, 363jca 1235 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
3837expcom 450 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
39383adant1 1072 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4039a1d 25 . . . . . . . . . . . . . . 15 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4129, 40sylbi 206 . . . . . . . . . . . . . 14 ((𝐾 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4228, 41syl6bi 242 . . . . . . . . . . . . 13 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4342com23 84 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4443impcom 445 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4544com13 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4626, 45mpcom 37 . . . . . . . . 9 ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4725, 46syl 17 . . . . . . . 8 (𝐽 ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4815, 47mpcom 37 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
49 eluz2 11569 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
5049biimpri 217 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝑁 ∈ (ℤ𝐾))
51 uzss 11584 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
5248, 50, 513syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
53 fzoend 12425 . . . . . . . . . 10 (𝑀 ∈ (𝑀..^𝑁) → (𝑁 − 1) ∈ (𝑀..^𝑁))
54 eleq2 2677 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) ↔ (𝑁 − 1) ∈ (𝐽..^𝐾)))
55 elfzo2 12342 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (𝐽..^𝐾) ↔ ((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))
56 pm3.2 462 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
57563ad2ant2 1076 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
5857com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
59583adant1 1072 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6055, 59sylbi 206 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6154, 60syl6bi 242 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6261com3l 87 . . . . . . . . . 10 ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6353, 62syl 17 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
649, 63mpcom 37 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6564imp 444 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))
66 simpl 472 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁 ∈ ℤ)
67 simprl 790 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ ℤ)
68 zlem1lt 11306 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
6968ancoms 468 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
7069biimprd 237 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) < 𝐾𝑁𝐾))
7170impancom 455 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ → 𝑁𝐾))
7271impcom 445 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁𝐾)
73 eluz2 11569 . . . . . . . 8 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
7466, 67, 72, 73syl3anbrc 1239 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ (ℤ𝑁))
75 uzss 11584 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
7665, 74, 753syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
7752, 76eqssd 3585 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) = (ℤ𝐾))
78 simpl2 1058 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 ∈ ℤ)
79 uz11 11586 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8078, 79syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8177, 80mpbid 221 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 = 𝐾)
8224, 81jca 553 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
8382ex 449 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
84 oveq12 6558 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀..^𝑁) = (𝐽..^𝐾))
8583, 84impbid1 214 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  1c1 9816   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  2ffzoeq  40361
  Copyright terms: Public domain W3C validator