Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wwlknp Structured version   Visualization version   GIF version

Theorem wwlknp 41045
 Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
Hypotheses
Ref Expression
wwlkbp.v 𝑉 = (Vtx‘𝐺)
wwlknp.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlknp (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊   𝑖,𝑁
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem wwlknp
StepHypRef Expression
1 wwlkbp.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlknbp 41044 . 2 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
3 iswwlksn 41041 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1))))
4 wwlknp.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
51, 4iswwlks 41039 . . . . . . 7 (𝑊 ∈ (WWalkS‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 simpl2 1058 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
7 simprl 790 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (#‘𝑊) = (𝑁 + 1))
8 oveq1 6556 . . . . . . . . . . . . . . 15 ((#‘𝑊) = (𝑁 + 1) → ((#‘𝑊) − 1) = ((𝑁 + 1) − 1))
9 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
10 pncan1 10333 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
128, 11sylan9eq 2664 . . . . . . . . . . . . . 14 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ((#‘𝑊) − 1) = 𝑁)
1312oveq2d 6565 . . . . . . . . . . . . 13 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((#‘𝑊) − 1)) = (0..^𝑁))
1413raleqdv 3121 . . . . . . . . . . . 12 (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1514biimpcd 238 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
16153ad2ant3 1077 . . . . . . . . . 10 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1716imp 444 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
186, 7, 173jca 1235 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1918ex 449 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
205, 19sylbi 206 . . . . . 6 (𝑊 ∈ (WWalkS‘𝐺) → (((#‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2120expdimp 452 . . . . 5 ((𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2221com12 32 . . . 4 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
233, 22sylbid 229 . . 3 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
24233ad2ant2 1076 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
252, 24mpcom 37 1 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173  ∅c0 3874  {cpr 4127  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℕ0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  Edgcedga 25792  WWalkScwwlks 41028   WWalkSN cwwlksn 41029 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wwlks 41033  df-wwlksn 41034 This theorem is referenced by:  wwlknbp2  41063  wwlksnext  41099  wwlksnextbi  41100  wwlksnredwwlkn  41101  wwlksnredwwlkn0  41102  wwlksnextwrd  41103  wwlksnextsur  41106  wwlksnextproplem2  41116  wwlksnextproplem3  41117  rusgrnumwwlks  41177  clwwlksf1  41224  clwwlksvbij  41229  wwlksext2clwwlk  41231  av-numclwwlk2lem1  41532
 Copyright terms: Public domain W3C validator