Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iswwlksn Structured version   Visualization version   GIF version

Theorem iswwlksn 41041
 Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
iswwlksn (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1))))

Proof of Theorem iswwlksn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wwlksn 41040 . . 3 (𝑁 ∈ ℕ0 → (𝑁 WWalkSN 𝐺) = {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
21eleq2d 2673 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ↔ 𝑊 ∈ {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)}))
3 fveq2 6103 . . . 4 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
43eqeq1d 2612 . . 3 (𝑤 = 𝑊 → ((#‘𝑤) = (𝑁 + 1) ↔ (#‘𝑊) = (𝑁 + 1)))
54elrab 3331 . 2 (𝑊 ∈ {𝑤 ∈ (WWalkS‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1)))
62, 5syl6bb 275 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑊 ∈ (WWalkS‘𝐺) ∧ (#‘𝑊) = (𝑁 + 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900  ‘cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  ℕ0cn0 11169  #chash 12979  WWalkScwwlks 41028   WWalkSN cwwlksn 41029 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-wwlksn 41034 This theorem is referenced by:  iswwlksnx  41042  wwlknbp  41044  wwlknp  41045  wwlkswwlksn  41061  1wlklnwwlkln1  41065  1wlklnwwlkln2lem  41079  wlknewwlksn  41084  wwlksnred  41098  wwlksnext  41099  wwlksnextproplem3  41117  wspthsnonn0vne  41124  elwspths2spth  41171  rusgrnumwwlkl1  41172  clwwlksel  41221  clwwlksf  41222
 Copyright terms: Public domain W3C validator