Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunsge0lem Structured version   Visualization version   GIF version

Theorem voliunsge0lem 39365
Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliunsge0lem.s 𝑆 = seq1( + , 𝐺)
voliunsge0lem.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
voliunsge0lem.e (𝜑𝐸:ℕ⟶dom vol)
voliunsge0lem.d (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
Assertion
Ref Expression
voliunsge0lem (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝐸   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝐺(𝑛)

Proof of Theorem voliunsge0lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . 5 𝑛𝜑
2 nfcv 2751 . . . . . . 7 𝑛vol
3 nfiu1 4486 . . . . . . 7 𝑛 𝑛 ∈ ℕ (𝐸𝑛)
42, 3nffv 6110 . . . . . 6 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛))
54nfeq1 2764 . . . . 5 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞
6 iccssxr 12127 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
7 volf 23104 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
87a1i 11 . . . . . . . . . . 11 (𝜑 → vol:dom vol⟶(0[,]+∞))
9 voliunsge0lem.e . . . . . . . . . . . . . 14 (𝜑𝐸:ℕ⟶dom vol)
109ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
1110ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
12 iunmbl 23128 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
148, 13ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ (0[,]+∞))
156, 14sseldi 3566 . . . . . . . . 9 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17163adant3 1074 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
18 id 22 . . . . . . . . . 10 ((vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) = +∞)
1918eqcomd 2616 . . . . . . . . 9 ((vol‘(𝐸𝑛)) = +∞ → +∞ = (vol‘(𝐸𝑛)))
20193ad2ant3 1077 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ = (vol‘(𝐸𝑛)))
2113adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
22 ssiun2 4499 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
2322adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
24 volss 23108 . . . . . . . . . 10 (((𝐸𝑛) ∈ dom vol ∧ 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol ∧ (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2510, 21, 23, 24syl3anc 1318 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
26253adant3 1074 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2720, 26eqbrtrd 4605 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2817, 27xrgepnfd 38488 . . . . . 6 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
29283exp 1256 . . . . 5 (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)))
301, 5, 29rexlimd 3008 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞))
3130imp 444 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
32 nfre1 2988 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞
331, 32nfan 1816 . . . 4 𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
34 nnex 10903 . . . . 5 ℕ ∈ V
3534a1i 11 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ℕ ∈ V)
367a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3736, 10ffvelrnd 6268 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
3837adantlr 747 . . . 4 (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
39 simpr 476 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4033, 35, 38, 39sge0pnfmpt 39338 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = +∞)
4131, 40eqtr4d 2647 . 2 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
42 ralnex 2975 . . . . . 6 (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4342biimpri 217 . . . . 5 (¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4443adantl 481 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4537adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
4618necon3bi 2808 . . . . . . . . . 10 (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ≠ +∞)
4746adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≠ +∞)
48 ge0xrre 38605 . . . . . . . . 9 (((vol‘(𝐸𝑛)) ∈ (0[,]+∞) ∧ (vol‘(𝐸𝑛)) ≠ +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
4945, 47, 48syl2anc 691 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
5049ex 449 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ∈ ℝ))
51 renepnf 9966 . . . . . . . . 9 ((vol‘(𝐸𝑛)) ∈ ℝ → (vol‘(𝐸𝑛)) ≠ +∞)
5251neneqd 2787 . . . . . . . 8 ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞)
5352a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞))
5450, 53impbid 201 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ ↔ (vol‘(𝐸𝑛)) ∈ ℝ))
5554ralbidva 2968 . . . . 5 (𝜑 → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5655adantr 480 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5744, 56mpbid 221 . . 3 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
58 nfra1 2925 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ
591, 58nfan 1816 . . . . . 6 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
6010adantlr 747 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
61 rspa 2914 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6261adantll 746 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6360, 62jca 553 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
6463ex 449 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ)))
6559, 64ralrimi 2940 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
66 voliunsge0lem.d . . . . . 6 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
68 voliunsge0lem.s . . . . . 6 𝑆 = seq1( + , 𝐺)
69 voliunsge0lem.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
7068, 69voliun 23129 . . . . 5 ((∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
7165, 67, 70syl2anc 691 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
72 1zzd 11285 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → 1 ∈ ℤ)
73 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
74 nfv 1830 . . . . . . . . 9 𝑛 𝑚 ∈ ℕ
7559, 74nfan 1816 . . . . . . . 8 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)
76 nfv 1830 . . . . . . . 8 𝑛(vol‘(𝐸𝑚)) ∈ (0[,)+∞)
7775, 76nfim 1813 . . . . . . 7 𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
78 eleq1 2676 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ))
7978anbi2d 736 . . . . . . . 8 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)))
80 fveq2 6103 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
8180fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑚 → (vol‘(𝐸𝑛)) = (vol‘(𝐸𝑚)))
8281eleq1d 2672 . . . . . . . 8 (𝑛 = 𝑚 → ((vol‘(𝐸𝑛)) ∈ (0[,)+∞) ↔ (vol‘(𝐸𝑚)) ∈ (0[,)+∞)))
8379, 82imbi12d 333 . . . . . . 7 (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))))
84 0xr 9965 . . . . . . . . 9 0 ∈ ℝ*
8584a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*)
86 pnfxr 9971 . . . . . . . . 9 +∞ ∈ ℝ*
8786a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
8862rexrd 9968 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ*)
89 volge0 38853 . . . . . . . . . 10 ((𝐸𝑛) ∈ dom vol → 0 ≤ (vol‘(𝐸𝑛)))
9010, 89syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9190adantlr 747 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9262ltpnfd 11831 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) < +∞)
9385, 87, 88, 91, 92elicod 12095 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞))
9477, 83, 93chvar 2250 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
9581cbvmptv 4678 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸𝑚)))
9694, 95fmptd 6292 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))):ℕ⟶(0[,)+∞))
97 seqeq3 12668 . . . . . . 7 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
9869, 97ax-mp 5 . . . . . 6 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9968, 98eqtri 2632 . . . . 5 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
10072, 73, 96, 99sge0seq 39339 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = sup(ran 𝑆, ℝ*, < ))
10171, 100eqtr4d 2647 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10257, 101syldan 486 . 2 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10341, 102pm2.61dan 828 1 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cn 10897  [,)cico 12048  [,]cicc 12049  seqcseq 12663  volcvol 23039  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-sumge0 39256
This theorem is referenced by:  voliunsge0  39366
  Copyright terms: Public domain W3C validator