MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2a Structured version   Visualization version   GIF version

Theorem uniioombllem2a 23156
Description: Lemma for uniioombl 23163. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem2a (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2a
StepHypRef Expression
1 inss2 3796 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
2 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32adantr 480 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
43ffvelrnda 6267 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
51, 4sseldi 3566 . . . . . . 7 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ (ℝ × ℝ))
6 1st2nd2 7096 . . . . . . 7 ((𝐹𝑧) ∈ (ℝ × ℝ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
75, 6syl 17 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
87fveq2d 6107 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩))
9 df-ov 6552 . . . . 5 ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
108, 9syl6eqr 2662 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))))
11 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1211ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
131, 12sseldi 3566 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
14 1st2nd2 7096 . . . . . . . 8 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1513, 14syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1615fveq2d 6107 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
17 df-ov 6552 . . . . . 6 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1816, 17syl6eqr 2662 . . . . 5 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
1918adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
2010, 19ineq12d 3777 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
21 ovolfcl 23042 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
223, 21sylan 487 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
2322simp1d 1066 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ)
2423rexrd 9968 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ*)
2522simp2d 1067 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ)
2625rexrd 9968 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ*)
27 ovolfcl 23042 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2811, 27sylan 487 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2928simp1d 1066 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
3029rexrd 9968 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3130adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3228simp2d 1067 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
3332rexrd 9968 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
3433adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
35 iooin 12080 . . . 4 ((((1st ‘(𝐹𝑧)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝐽)) ∈ ℝ* ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ*)) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3624, 26, 31, 34, 35syl22anc 1319 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3720, 36eqtrd 2644 . 2 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
38 ioorebas 12146 . 2 (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))) ∈ ran (,)
3937, 38syl6eqel 2696 1 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cin 3539  wss 3540  ifcif 4036  cop 4131   cuni 4372  Disj wdisj 4553   class class class wbr 4583   × cxp 5036  ran crn 5039  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  supcsup 8229  cr 9814  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  +crp 11708  (,)cioo 12046  seqcseq 12663  abscabs 13822  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050
This theorem is referenced by:  uniioombllem2  23157
  Copyright terms: Public domain W3C validator