MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorebas Structured version   Visualization version   GIF version

Theorem ioorebas 12146
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorebas (𝐴(,)𝐵) ∈ ran (,)

Proof of Theorem ioorebas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) = ∅)
2 iooid 12074 . . . 4 (0(,)0) = ∅
3 ioof 12142 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 5958 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 0xr 9965 . . . . 5 0 ∈ ℝ*
7 fnovrn 6707 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
85, 6, 6, 7mp3an 1416 . . . 4 (0(,)0) ∈ ran (,)
92, 8eqeltrri 2685 . . 3 ∅ ∈ ran (,)
101, 9syl6eqel 2696 . 2 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) ∈ ran (,))
11 n0 3890 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
12 eliooxr 12103 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
13 fnovrn 6707 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
145, 13mp3an1 1403 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
1512, 14syl 17 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1615exlimiv 1845 . . 3 (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1711, 16sylbi 206 . 2 ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ∈ ran (,))
1810, 17pm2.61ine 2865 1 (𝐴(,)𝐵) ∈ ran (,)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  c0 3874  𝒫 cpw 4108   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  (class class class)co 6549  cr 9814  0cc0 9815  *cxr 9952  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050
This theorem is referenced by:  iooordt  20831  iooretop  22379  blssioo  22406  xrtgioo  22417  ioorinv2  23149  ioorinv  23150  uniioombllem2a  23156  ismbf  23203
  Copyright terms: Public domain W3C validator