Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccmbl Structured version   Visualization version   GIF version

Theorem uniiccmbl 23164
 Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 23128.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccmbl (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccmbl
StepHypRef Expression
1 uniioombl.1 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21uniiccdif 23152 . . . 4 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
32simpld 474 . . 3 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
4 undif 4001 . . 3 ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ↔ ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
53, 4sylib 207 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
6 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . 4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
81, 6, 7uniioombl 23163 . . 3 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
9 ovolficcss 23045 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
101, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
1110ssdifssd 3710 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
122simprd 478 . . . 4 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
13 nulmbl 23110 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
1411, 12, 13syl2anc 691 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
15 unmbl 23112 . . 3 (( ran ((,) ∘ 𝐹) ∈ dom vol ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol) → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
168, 14, 15syl2anc 691 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
175, 16eqeltrrd 2689 1 (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∪ cuni 4372  Disj wdisj 4553   × cxp 5036  dom cdm 5038  ran crn 5039   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   ≤ cle 9954   − cmin 10145  ℕcn 10897  (,)cioo 12046  [,]cicc 12049  seqcseq 12663  abscabs 13822  vol*covol 23038  volcvol 23039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041 This theorem is referenced by:  dyadmbl  23174
 Copyright terms: Public domain W3C validator