MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   GIF version

Theorem ovolficcss 23045
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)

Proof of Theorem ovolficcss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 5559 . . 3 ran ([,] ∘ 𝐹) = ([,] “ ran 𝐹)
2 inss2 3796 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 ffvelrn 6265 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ ( ≤ ∩ (ℝ × ℝ)))
42, 3sseldi 3566 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ (ℝ × ℝ))
5 1st2nd2 7096 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (ℝ × ℝ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
64, 5syl 17 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
76fveq2d 6107 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩))
8 df-ov 6552 . . . . . . . . 9 ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
97, 8syl6eqr 2662 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))))
10 xp1st 7089 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
114, 10syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
12 xp2nd 7090 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
134, 12syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
14 iccssre 12126 . . . . . . . . 9 (((1st ‘(𝐹𝑦)) ∈ ℝ ∧ (2nd ‘(𝐹𝑦)) ∈ ℝ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
1511, 13, 14syl2anc 691 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
169, 15eqsstrd 3602 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ⊆ ℝ)
17 reex 9906 . . . . . . . 8 ℝ ∈ V
1817elpw2 4755 . . . . . . 7 (([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ⊆ ℝ)
1916, 18sylibr 223 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
2019ralrimiva 2949 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
21 ffn 5958 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn ℕ)
22 fveq2 6103 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ([,]‘𝑥) = ([,]‘(𝐹𝑦)))
2322eleq1d 2672 . . . . . . 7 (𝑥 = (𝐹𝑦) → (([,]‘𝑥) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2423ralrn 6270 . . . . . 6 (𝐹 Fn ℕ → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2521, 24syl 17 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2620, 25mpbird 246 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)
27 iccf 12143 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
28 ffun 5961 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
2927, 28ax-mp 5 . . . . 5 Fun [,]
30 frn 5966 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
31 rexpssxrxp 9963 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
322, 31sstri 3577 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
3327fdmi 5965 . . . . . . 7 dom [,] = (ℝ* × ℝ*)
3432, 33sseqtr4i 3601 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ dom [,]
3530, 34syl6ss 3580 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ dom [,])
36 funimass4 6157 . . . . 5 ((Fun [,] ∧ ran 𝐹 ⊆ dom [,]) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3729, 35, 36sylancr 694 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3826, 37mpbird 246 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] “ ran 𝐹) ⊆ 𝒫 ℝ)
391, 38syl5eqss 3612 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ)
40 sspwuni 4547 . 2 (ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ([,] ∘ 𝐹) ⊆ ℝ)
4139, 40sylib 207 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cin 3539  wss 3540  𝒫 cpw 4108  cop 4131   cuni 4372   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  cr 9814  *cxr 9952  cle 9954  cn 10897  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053
This theorem is referenced by:  ovollb2lem  23063  ovollb2  23064  uniiccdif  23152  uniiccvol  23154  uniioombllem3  23159  uniioombllem4  23160  uniioombllem5  23161  uniiccmbl  23164
  Copyright terms: Public domain W3C validator