MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Unicode version

Theorem ovolficcss 21613
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )

Proof of Theorem ovolficcss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 5512 . . 3  |-  ran  ( [,]  o.  F )  =  ( [,] " ran  F )
2 inss2 3719 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
3 ffvelrn 6017 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
42, 3sseldi 3502 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  ( RR  X.  RR ) )
5 1st2nd2 6818 . . . . . . . . . . 11  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( F `
 y )  = 
<. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
64, 5syl 16 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  =  <. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
76fveq2d 5868 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( [,] `  <. ( 1st `  ( F `
 y ) ) ,  ( 2nd `  ( F `  y )
) >. ) )
8 df-ov 6285 . . . . . . . . 9  |-  ( ( 1st `  ( F `
 y ) ) [,] ( 2nd `  ( F `  y )
) )  =  ( [,] `  <. ( 1st `  ( F `  y ) ) ,  ( 2nd `  ( F `  y )
) >. )
97, 8syl6eqr 2526 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) ) )
10 xp1st 6811 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 1st `  ( F `  y
) )  e.  RR )
114, 10syl 16 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 1st `  ( F `  y ) )  e.  RR )
12 xp2nd 6812 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( F `  y
) )  e.  RR )
134, 12syl 16 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 2nd `  ( F `  y ) )  e.  RR )
14 iccssre 11602 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  y )
)  e.  RR  /\  ( 2nd `  ( F `
 y ) )  e.  RR )  -> 
( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
1511, 13, 14syl2anc 661 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  (
( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
169, 15eqsstrd 3538 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  C_  RR )
17 reex 9579 . . . . . . . 8  |-  RR  e.  _V
1817elpw2 4611 . . . . . . 7  |-  ( ( [,] `  ( F `
 y ) )  e.  ~P RR  <->  ( [,] `  ( F `  y
) )  C_  RR )
1916, 18sylibr 212 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  e. 
~P RR )
2019ralrimiva 2878 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. y  e.  NN  ( [,] `  ( F `  y )
)  e.  ~P RR )
21 ffn 5729 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  NN )
22 fveq2 5864 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  ( [,] `  x )  =  ( [,] `  ( F `  y )
) )
2322eleq1d 2536 . . . . . . 7  |-  ( x  =  ( F `  y )  ->  (
( [,] `  x
)  e.  ~P RR  <->  ( [,] `  ( F `
 y ) )  e.  ~P RR ) )
2423ralrn 6022 . . . . . 6  |-  ( F  Fn  NN  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2521, 24syl 16 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2620, 25mpbird 232 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. x  e.  ran  F ( [,] `  x )  e.  ~P RR )
27 iccf 11619 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
28 ffun 5731 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
2927, 28ax-mp 5 . . . . 5  |-  Fun  [,]
30 frn 5735 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
31 rexpssxrxp 9634 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
322, 31sstri 3513 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
3327fdmi 5734 . . . . . . 7  |-  dom  [,]  =  ( RR*  X.  RR* )
3432, 33sseqtr4i 3537 . . . . . 6  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  dom  [,]
3530, 34syl6ss 3516 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  dom  [,] )
36 funimass4 5916 . . . . 5  |-  ( ( Fun  [,]  /\  ran  F  C_ 
dom  [,] )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
3729, 35, 36sylancr 663 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
3826, 37mpbird 232 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( [,] " ran  F ) 
C_  ~P RR )
391, 38syl5eqss 3548 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  ( [,]  o.  F ) 
C_  ~P RR )
40 sspwuni 4411 . 2  |-  ( ran  ( [,]  o.  F
)  C_  ~P RR  <->  U.
ran  ( [,]  o.  F )  C_  RR )
4139, 40sylib 196 1  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   <.cop 4033   U.cuni 4245    X. cxp 4997   dom cdm 4999   ran crn 5000   "cima 5002    o. ccom 5003   Fun wfun 5580    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780   RRcr 9487   RR*cxr 9623    <_ cle 9625   NNcn 10532   [,]cicc 11528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-pre-lttri 9562  ax-pre-lttrn 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-icc 11532
This theorem is referenced by:  ovollb2lem  21631  ovollb2  21632  uniiccdif  21719  uniiccvol  21721  uniioombllem3  21726  uniioombllem4  21727  uniioombllem5  21728  uniiccmbl  21731
  Copyright terms: Public domain W3C validator