MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Visualization version   GIF version

Theorem dyadmbl 23174
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbl (𝜑 ([,] “ 𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbl
Dummy variables 𝑓 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2 dyadmbl.2 . . 3 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
3 dyadmbl.3 . . 3 (𝜑𝐴 ⊆ ran 𝐹)
41, 2, 3dyadmbllem 23173 . 2 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
5 isfinite 8432 . . . 4 (𝐺 ∈ Fin ↔ 𝐺 ≺ ω)
6 iccf 12143 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 ffun 5961 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
8 funiunfv 6410 . . . . . 6 (Fun [,] → 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺))
96, 7, 8mp2b 10 . . . . 5 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺)
10 simpr 476 . . . . . 6 ((𝜑𝐺 ∈ Fin) → 𝐺 ∈ Fin)
11 ssrab2 3650 . . . . . . . . . . . . . . . 16 {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} ⊆ 𝐴
122, 11eqsstri 3598 . . . . . . . . . . . . . . 15 𝐺𝐴
1312, 3syl5ss 3579 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ ran 𝐹)
141dyadf 23165 . . . . . . . . . . . . . . . 16 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
15 frn 5966 . . . . . . . . . . . . . . . 16 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
17 inss2 3796 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1816, 17sstri 3577 . . . . . . . . . . . . . 14 ran 𝐹 ⊆ (ℝ × ℝ)
1913, 18syl6ss 3580 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (ℝ × ℝ))
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ Fin) → 𝐺 ⊆ (ℝ × ℝ))
2120sselda 3568 . . . . . . . . . . 11 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 ∈ (ℝ × ℝ))
22 1st2nd2 7096 . . . . . . . . . . 11 (𝑛 ∈ (ℝ × ℝ) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2321, 22syl 17 . . . . . . . . . 10 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2423fveq2d 6107 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩))
25 df-ov 6552 . . . . . . . . 9 ((1st𝑛)[,](2nd𝑛)) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩)
2624, 25syl6eqr 2662 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ((1st𝑛)[,](2nd𝑛)))
27 xp1st 7089 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (1st𝑛) ∈ ℝ)
2821, 27syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (1st𝑛) ∈ ℝ)
29 xp2nd 7090 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (2nd𝑛) ∈ ℝ)
3021, 29syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (2nd𝑛) ∈ ℝ)
31 iccmbl 23141 . . . . . . . . 9 (((1st𝑛) ∈ ℝ ∧ (2nd𝑛) ∈ ℝ) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3228, 30, 31syl2anc 691 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3326, 32eqeltrd 2688 . . . . . . 7 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) ∈ dom vol)
3433ralrimiva 2949 . . . . . 6 ((𝜑𝐺 ∈ Fin) → ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
35 finiunmbl 23119 . . . . . 6 ((𝐺 ∈ Fin ∧ ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
3610, 34, 35syl2anc 691 . . . . 5 ((𝜑𝐺 ∈ Fin) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
379, 36syl5eqelr 2693 . . . 4 ((𝜑𝐺 ∈ Fin) → ([,] “ 𝐺) ∈ dom vol)
385, 37sylan2br 492 . . 3 ((𝜑𝐺 ≺ ω) → ([,] “ 𝐺) ∈ dom vol)
39 nnenom 12641 . . . . . . 7 ℕ ≈ ω
40 ensym 7891 . . . . . . 7 (𝐺 ≈ ω → ω ≈ 𝐺)
41 entr 7894 . . . . . . 7 ((ℕ ≈ ω ∧ ω ≈ 𝐺) → ℕ ≈ 𝐺)
4239, 40, 41sylancr 694 . . . . . 6 (𝐺 ≈ ω → ℕ ≈ 𝐺)
43 bren 7850 . . . . . 6 (ℕ ≈ 𝐺 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
4442, 43sylib 207 . . . . 5 (𝐺 ≈ ω → ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
45 rnco2 5559 . . . . . . . . . 10 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
46 f1ofo 6057 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–onto𝐺)
4746adantl 481 . . . . . . . . . . . 12 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–onto𝐺)
48 forn 6031 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐺 → ran 𝑓 = 𝐺)
4947, 48syl 17 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran 𝑓 = 𝐺)
5049imaeq2d 5385 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ ran 𝑓) = ([,] “ 𝐺))
5145, 50syl5eq 2656 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
5251unieqd 4382 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
53 f1of 6050 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ⟶𝐺)
5413, 16syl6ss 3580 . . . . . . . . . 10 (𝜑𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ)))
55 fss 5969 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
5653, 54, 55syl2anr 494 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
57 fss 5969 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ran 𝐹) → 𝑓:ℕ⟶ran 𝐹)
5853, 13, 57syl2anr 494 . . . . . . . . . . . . . 14 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶ran 𝐹)
59 simpl 472 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑎 ∈ ℕ)
60 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝐹𝑎 ∈ ℕ) → (𝑓𝑎) ∈ ran 𝐹)
6158, 59, 60syl2an 493 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ ran 𝐹)
62 simpr 476 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
63 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝐹𝑏 ∈ ℕ) → (𝑓𝑏) ∈ ran 𝐹)
6458, 62, 63syl2an 493 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ ran 𝐹)
651dyaddisj 23170 . . . . . . . . . . . . 13 (((𝑓𝑎) ∈ ran 𝐹 ∧ (𝑓𝑏) ∈ ran 𝐹) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
6661, 64, 65syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
6753adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶𝐺)
68 ffvelrn 6265 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶𝐺𝑏 ∈ ℕ) → (𝑓𝑏) ∈ 𝐺)
6967, 62, 68syl2an 493 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐺)
7012, 69sseldi 3566 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐴)
71 ffvelrn 6265 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶𝐺𝑎 ∈ ℕ) → (𝑓𝑎) ∈ 𝐺)
7267, 59, 71syl2an 493 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐺)
73 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓𝑎) → ([,]‘𝑧) = ([,]‘(𝑓𝑎)))
7473sseq1d 3595 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤)))
75 eqeq1 2614 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → (𝑧 = 𝑤 ↔ (𝑓𝑎) = 𝑤))
7674, 75imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7776ralbidv 2969 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑎) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7877, 2elrab2 3333 . . . . . . . . . . . . . . . . 17 ((𝑓𝑎) ∈ 𝐺 ↔ ((𝑓𝑎) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7978simprbi 479 . . . . . . . . . . . . . . . 16 ((𝑓𝑎) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
8072, 79syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
81 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑏) → ([,]‘𝑤) = ([,]‘(𝑓𝑏)))
8281sseq2d 3596 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑏) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏))))
83 eqeq2 2621 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑏) → ((𝑓𝑎) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
8482, 83imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑏) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
8584rspcv 3278 . . . . . . . . . . . . . . 15 ((𝑓𝑏) ∈ 𝐴 → (∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
8670, 80, 85sylc 63 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏)))
87 f1of1 6049 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–1-1𝐺)
8887adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–1-1𝐺)
89 f1fveq 6420 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1𝐺 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
9088, 89sylan 487 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
91 orc 399 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
9290, 91syl6bi 242 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
9386, 92syld 46 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
9412, 72sseldi 3566 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐴)
95 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓𝑏) → ([,]‘𝑧) = ([,]‘(𝑓𝑏)))
9695sseq1d 3595 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤)))
97 eqeq1 2614 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → (𝑧 = 𝑤 ↔ (𝑓𝑏) = 𝑤))
9896, 97imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9998ralbidv 2969 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑏) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
10099, 2elrab2 3333 . . . . . . . . . . . . . . . . 17 ((𝑓𝑏) ∈ 𝐺 ↔ ((𝑓𝑏) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
101100simprbi 479 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
10269, 101syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
103 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑎) → ([,]‘𝑤) = ([,]‘(𝑓𝑎)))
104103sseq2d 3596 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑎) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎))))
105 eqeq2 2621 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑏) = (𝑓𝑎)))
106 eqcom 2617 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑏) = (𝑓𝑎) ↔ (𝑓𝑎) = (𝑓𝑏))
107105, 106syl6bb 275 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
108104, 107imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ((([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
109108rspcv 3278 . . . . . . . . . . . . . . 15 ((𝑓𝑎) ∈ 𝐴 → (∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
11094, 102, 109sylc 63 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏)))
111110, 92syld 46 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
112 olc 398 . . . . . . . . . . . . . 14 ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
113112a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
11493, 111, 1133jaod 1384 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
11566, 114mpd 15 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
116115ralrimivva 2954 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
117 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
118117fveq2d 6107 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((,)‘(𝑓𝑎)) = ((,)‘(𝑓𝑏)))
119118disjor 4567 . . . . . . . . . 10 (Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
120116, 119sylibr 223 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)))
121 eqid 2610 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
12256, 120, 121uniiccmbl 23164 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) ∈ dom vol)
12352, 122eqeltrrd 2689 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ 𝐺) ∈ dom vol)
124123ex 449 . . . . . 6 (𝜑 → (𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
125124exlimdv 1848 . . . . 5 (𝜑 → (∃𝑓 𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
12644, 125syl5 33 . . . 4 (𝜑 → (𝐺 ≈ ω → ([,] “ 𝐺) ∈ dom vol))
127126imp 444 . . 3 ((𝜑𝐺 ≈ ω) → ([,] “ 𝐺) ∈ dom vol)
128 reex 9906 . . . . . . . . 9 ℝ ∈ V
129128, 128xpex 6860 . . . . . . . 8 (ℝ × ℝ) ∈ V
130129inex2 4728 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
131130, 16ssexi 4731 . . . . . 6 ran 𝐹 ∈ V
132 ssdomg 7887 . . . . . 6 (ran 𝐹 ∈ V → (𝐺 ⊆ ran 𝐹𝐺 ≼ ran 𝐹))
133131, 13, 132mpsyl 66 . . . . 5 (𝜑𝐺 ≼ ran 𝐹)
134 omelon 8426 . . . . . . . 8 ω ∈ On
135 znnen 14780 . . . . . . . . . . . 12 ℤ ≈ ℕ
136135, 39entri 7896 . . . . . . . . . . 11 ℤ ≈ ω
137 nn0ennn 12640 . . . . . . . . . . . 12 0 ≈ ℕ
138137, 39entri 7896 . . . . . . . . . . 11 0 ≈ ω
139 xpen 8008 . . . . . . . . . . 11 ((ℤ ≈ ω ∧ ℕ0 ≈ ω) → (ℤ × ℕ0) ≈ (ω × ω))
140136, 138, 139mp2an 704 . . . . . . . . . 10 (ℤ × ℕ0) ≈ (ω × ω)
141 xpomen 8721 . . . . . . . . . 10 (ω × ω) ≈ ω
142140, 141entri 7896 . . . . . . . . 9 (ℤ × ℕ0) ≈ ω
143142ensymi 7892 . . . . . . . 8 ω ≈ (ℤ × ℕ0)
144 isnumi 8655 . . . . . . . 8 ((ω ∈ On ∧ ω ≈ (ℤ × ℕ0)) → (ℤ × ℕ0) ∈ dom card)
145134, 143, 144mp2an 704 . . . . . . 7 (ℤ × ℕ0) ∈ dom card
146 ffn 5958 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14714, 146ax-mp 5 . . . . . . . 8 𝐹 Fn (ℤ × ℕ0)
148 dffn4 6034 . . . . . . . 8 (𝐹 Fn (ℤ × ℕ0) ↔ 𝐹:(ℤ × ℕ0)–onto→ran 𝐹)
149147, 148mpbi 219 . . . . . . 7 𝐹:(ℤ × ℕ0)–onto→ran 𝐹
150 fodomnum 8763 . . . . . . 7 ((ℤ × ℕ0) ∈ dom card → (𝐹:(ℤ × ℕ0)–onto→ran 𝐹 → ran 𝐹 ≼ (ℤ × ℕ0)))
151145, 149, 150mp2 9 . . . . . 6 ran 𝐹 ≼ (ℤ × ℕ0)
152 domentr 7901 . . . . . 6 ((ran 𝐹 ≼ (ℤ × ℕ0) ∧ (ℤ × ℕ0) ≈ ω) → ran 𝐹 ≼ ω)
153151, 142, 152mp2an 704 . . . . 5 ran 𝐹 ≼ ω
154 domtr 7895 . . . . 5 ((𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω) → 𝐺 ≼ ω)
155133, 153, 154sylancl 693 . . . 4 (𝜑𝐺 ≼ ω)
156 brdom2 7871 . . . 4 (𝐺 ≼ ω ↔ (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
157155, 156sylib 207 . . 3 (𝜑 → (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
15838, 127, 157mpjaodan 823 . 2 (𝜑 ([,] “ 𝐺) ∈ dom vol)
1594, 158eqeltrd 2688 1 (𝜑 ([,] “ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wex 1695  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  cop 4131   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  ωcom 6957  1st c1st 7057  2nd c2nd 7058  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  cardccrd 8644  cr 9814  1c1 9816   + caddc 9818  *cxr 9952  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  (,)cioo 12046  [,]cicc 12049  seqcseq 12663  cexp 12722  abscabs 13822  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041
This theorem is referenced by:  opnmbllem  23175
  Copyright terms: Public domain W3C validator