Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredtr Structured version   Visualization version   GIF version

Theorem trpredtr 30974
Description: The transitive predecessors are transitive in 𝑅 and 𝐴 (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredtr ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))

Proof of Theorem trpredtr
Dummy variables 𝑎 𝑓 𝑖 𝑗 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 30970 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 simplr 788 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑖 ∈ ω)
3 peano2 6978 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
42, 3syl 17 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → suc 𝑖 ∈ ω)
5 simpr 476 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
6 ssid 3587 . . . . . . 7 Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)
7 predeq3 5601 . . . . . . . . . 10 (𝑡 = 𝑌 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑌))
87sseq2d 3596 . . . . . . . . 9 (𝑡 = 𝑌 → (Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)))
98rspcev 3282 . . . . . . . 8 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → ∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡))
10 ssiun 4498 . . . . . . . 8 (∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
119, 10syl 17 . . . . . . 7 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
125, 6, 11sylancl 693 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
13 fvex 6113 . . . . . . . 8 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V
14 setlikespec 5618 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 trpredlem1 30971 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1716sseld 3567 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝐴))
18 setlikespec 5618 . . . . . . . . . . . . 13 ((𝑡𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑡) ∈ V)
1918expcom 450 . . . . . . . . . . . 12 (𝑅 Se 𝐴 → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2019adantl 481 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2117, 20syld 46 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2221ralrimiv 2948 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2322ad2antrr 758 . . . . . . . 8 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
24 iunexg 7035 . . . . . . . 8 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V ∧ ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2513, 23, 24sylancr 694 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
26 nfcv 2751 . . . . . . . 8 𝑓Pred(𝑅, 𝐴, 𝑋)
27 nfcv 2751 . . . . . . . 8 𝑓𝑖
28 nfcv 2751 . . . . . . . 8 𝑓 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡)
29 predeq3 5601 . . . . . . . . . . . 12 (𝑦 = 𝑡 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑡))
3029cbviunv 4495 . . . . . . . . . . 11 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡)
31 iuneq1 4470 . . . . . . . . . . 11 (𝑎 = 𝑓 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3230, 31syl5eq 2656 . . . . . . . . . 10 (𝑎 = 𝑓 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3332cbvmptv 4678 . . . . . . . . 9 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
34 rdgeq1 7394 . . . . . . . . 9 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)))
35 reseq1 5311 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
3633, 34, 35mp2b 10 . . . . . . . 8 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
37 iuneq1 4470 . . . . . . . 8 (𝑓 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
3826, 27, 28, 36, 37frsucmpt 7420 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
392, 25, 38syl2anc 691 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
4012, 39sseqtr4d 3605 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
41 fveq2 6103 . . . . . . . . 9 (𝑗 = suc 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
4241sseq2d 3596 . . . . . . . 8 (𝑗 = suc 𝑖 → (Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)))
4342rspcev 3282 . . . . . . 7 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → ∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
44 ssiun 4498 . . . . . . 7 (∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
4543, 44syl 17 . . . . . 6 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
46 dftrpred2 30963 . . . . . 6 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
4745, 46syl6sseqr 3615 . . . . 5 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
484, 40, 47syl2anc 691 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
4948ex 449 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5049rexlimdva 3013 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
511, 50syl5bi 231 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540   ciun 4455  cmpt 4643   Se wse 4995  cres 5040  Predcpred 5596  suc csuc 5642  cfv 5804  ωcom 6957  reccrdg 7392  TrPredctrpred 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962
This theorem is referenced by:  trpredelss  30976  frmin  30983
  Copyright terms: Public domain W3C validator