Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredlem1 Structured version   Visualization version   GIF version

Theorem trpredlem1 30971
Description: Technical lemma for transitive predecessors properties. All values of the transitive predecessors' underlying function are subsets of the base set. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
trpredlem1 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑎,𝑦   𝑅,𝑎,𝑦   𝑋,𝑎
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑦,𝑖,𝑎)   𝑅(𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem trpredlem1
Dummy variables 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 6982 . . 3 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
2 fr0g 7418 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
3 predss 5604 . . . . . 6 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
42, 3syl6eqss 3618 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐴)
5 fveq2 6103 . . . . . 6 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
65sseq1d 3595 . . . . 5 (𝑖 = ∅ → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐴))
74, 6syl5ibr 235 . . . 4 (𝑖 = ∅ → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴))
8 nfcv 2751 . . . . . . . . . . 11 𝑎Pred(𝑅, 𝐴, 𝑋)
9 nfcv 2751 . . . . . . . . . . 11 𝑎𝑗
10 nfmpt1 4675 . . . . . . . . . . . . . . 15 𝑎(𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦))
1110, 8nfrdg 7397 . . . . . . . . . . . . . 14 𝑎rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋))
12 nfcv 2751 . . . . . . . . . . . . . 14 𝑎ω
1311, 12nfres 5319 . . . . . . . . . . . . 13 𝑎(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
1413, 9nffv 6110 . . . . . . . . . . . 12 𝑎((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
15 nfcv 2751 . . . . . . . . . . . 12 𝑎Pred(𝑅, 𝐴, 𝑒)
1614, 15nfiun 4484 . . . . . . . . . . 11 𝑎 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒)
17 predeq3 5601 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑒))
1817cbviunv 4495 . . . . . . . . . . . . 13 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)
1918mpteq2i 4669 . . . . . . . . . . . 12 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒))
20 rdgeq1 7394 . . . . . . . . . . . 12 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)))
21 reseq1 5311 . . . . . . . . . . . 12 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
2219, 20, 21mp2b 10 . . . . . . . . . . 11 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
23 iuneq1 4470 . . . . . . . . . . 11 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑒𝑎 Pred(𝑅, 𝐴, 𝑒) = 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒))
248, 9, 16, 22, 23frsucmpt 7420 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒))
25 iunss 4497 . . . . . . . . . . 11 ( 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴 ↔ ∀𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴)
26 predss 5604 . . . . . . . . . . . 12 Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴
2726a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴)
2825, 27mprgbir 2911 . . . . . . . . . 10 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴
2924, 28syl6eqss 3618 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)
308, 9, 16, 22, 23frsucmptn 7421 . . . . . . . . . . 11 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = ∅)
3130adantl 481 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ ¬ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = ∅)
32 0ss 3924 . . . . . . . . . 10 ∅ ⊆ 𝐴
3331, 32syl6eqss 3618 . . . . . . . . 9 ((𝑗 ∈ ω ∧ ¬ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)
3429, 33pm2.61dan 828 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)
3534adantr 480 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)
36 fveq2 6103 . . . . . . . . 9 (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))
3736sseq1d 3595 . . . . . . . 8 (𝑖 = suc 𝑗 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴))
3837adantl 481 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴))
3935, 38mpbird 246 . . . . . 6 ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
4039rexlimiva 3010 . . . . 5 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
4140a1d 25 . . . 4 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴))
427, 41jaoi 393 . . 3 ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴))
431, 42syl 17 . 2 (𝑖 ∈ ω → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴))
44 nfvres 6134 . . . 4 𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ∅)
4544, 32syl6eqss 3618 . . 3 𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
4645a1d 25 . 2 𝑖 ∈ ω → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴))
4743, 46pm2.61i 175 1 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  c0 3874   ciun 4455  cmpt 4643  cres 5040  Predcpred 5596  suc csuc 5642  cfv 5804  ωcom 6957  reccrdg 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393
This theorem is referenced by:  trpredss  30973  trpredtr  30974  trpredmintr  30975  trpredrec  30982
  Copyright terms: Public domain W3C validator