Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredlem1 Structured version   Visualization version   Unicode version

Theorem trpredlem1 30539
Description: Technical lemma for transitive predecessors properties. All values of the transitive predecessors' underlying function are subsets of the base set. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
trpredlem1  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
Distinct variable groups:    A, a,
y    R, a, y    X, a
Allowed substitution hints:    A( i)    B( y, i, a)    R( i)    X( y, i)

Proof of Theorem trpredlem1
Dummy variables  e 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 6736 . . 3  |-  ( i  e.  om  ->  (
i  =  (/)  \/  E. j  e.  om  i  =  suc  j ) )
2 fr0g 7171 . . . . . 6  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
3 predss 5394 . . . . . 6  |-  Pred ( R ,  A ,  X )  C_  A
42, 3syl6eqss 3468 . . . . 5  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  A )
5 fveq2 5879 . . . . . 6  |-  ( i  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) )
65sseq1d 3445 . . . . 5  |-  ( i  =  (/)  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  A )
)
74, 6syl5ibr 229 . . . 4  |-  ( i  =  (/)  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
8 nfcv 2612 . . . . . . . . . . 11  |-  F/_ a Pred ( R ,  A ,  X )
9 nfcv 2612 . . . . . . . . . . 11  |-  F/_ a
j
10 nfmpt1 4485 . . . . . . . . . . . . . . 15  |-  F/_ a
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )
1110, 8nfrdg 7150 . . . . . . . . . . . . . 14  |-  F/_ a rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )
12 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ a om
1311, 12nfres 5113 . . . . . . . . . . . . 13  |-  F/_ a
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )
1413, 9nffv 5886 . . . . . . . . . . . 12  |-  F/_ a
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )
15 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ a Pred ( R ,  A ,  e )
1614, 15nfiun 4297 . . . . . . . . . . 11  |-  F/_ a U_ e  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )
17 predeq3 5391 . . . . . . . . . . . . . 14  |-  ( y  =  e  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
e ) )
1817cbviunv 4308 . . . . . . . . . . . . 13  |-  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ e  e.  a  Pred ( R ,  A ,  e )
1918mpteq2i 4479 . . . . . . . . . . . 12  |-  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) )  =  ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) )
20 rdgeq1 7147 . . . . . . . . . . . 12  |-  ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A ,  e ) ) ,  Pred ( R ,  A ,  X ) ) )
21 reseq1 5105 . . . . . . . . . . . 12  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A ,  e ) ) ,  Pred ( R ,  A ,  X ) )  -> 
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  =  ( rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) )
2219, 20, 21mp2b 10 . . . . . . . . . . 11  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ e  e.  a 
Pred ( R ,  A ,  e )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
23 iuneq1 4283 . . . . . . . . . . 11  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  U_ e  e.  a 
Pred ( R ,  A ,  e )  =  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e ) )
248, 9, 16, 22, 23frsucmpt 7173 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  =  U_ e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )
)
25 iunss 4310 . . . . . . . . . . 11  |-  ( U_ e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  C_  A  <->  A. e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  C_  A
)
26 predss 5394 . . . . . . . . . . . 12  |-  Pred ( R ,  A , 
e )  C_  A
2726a1i 11 . . . . . . . . . . 11  |-  ( e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  Pred ( R ,  A ,  e )  C_  A )
2825, 27mprgbir 2771 . . . . . . . . . 10  |-  U_ e  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  C_  A
2924, 28syl6eqss 3468 . . . . . . . . 9  |-  ( ( j  e.  om  /\  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  C_  A
)
308, 9, 16, 22, 23frsucmptn 7174 . . . . . . . . . . 11  |-  ( -. 
U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  =  (/) )
3130adantl 473 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  -.  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  =  (/) )
32 0ss 3766 . . . . . . . . . 10  |-  (/)  C_  A
3331, 32syl6eqss 3468 . . . . . . . . 9  |-  ( ( j  e.  om  /\  -.  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
3429, 33pm2.61dan 808 . . . . . . . 8  |-  ( j  e.  om  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  C_  A
)
3534adantr 472 . . . . . . 7  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
36 fveq2 5879 . . . . . . . . 9  |-  ( i  =  suc  j  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )
3736sseq1d 3445 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
)
3837adantl 473 . . . . . . 7  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
)
3935, 38mpbird 240 . . . . . 6  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A )
4039rexlimiva 2868 . . . . 5  |-  ( E. j  e.  om  i  =  suc  j  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
4140a1d 25 . . . 4  |-  ( E. j  e.  om  i  =  suc  j  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
427, 41jaoi 386 . . 3  |-  ( ( i  =  (/)  \/  E. j  e.  om  i  =  suc  j )  -> 
( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A ) )
431, 42syl 17 . 2  |-  ( i  e.  om  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
44 nfvres 5909 . . . 4  |-  ( -.  i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  =  (/) )
4544, 32syl6eqss 3468 . . 3  |-  ( -.  i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
4645a1d 25 . 2  |-  ( -.  i  e.  om  ->  (
Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A ) )
4743, 46pm2.61i 169 1  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757   _Vcvv 3031    C_ wss 3390   (/)c0 3722   U_ciun 4269    |-> cmpt 4454    |` cres 4841   Predcpred 5386   suc csuc 5432   ` cfv 5589   omcom 6711   reccrdg 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146
This theorem is referenced by:  trpredss  30541  trpredtr  30542  trpredmintr  30543  trpredrec  30550
  Copyright terms: Public domain W3C validator