Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredrec Structured version   Visualization version   GIF version

Theorem trpredrec 30982
Description: If 𝑌 is an 𝑅, 𝐴 transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between 𝑌 and 𝑋. (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredrec ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋   𝑧,𝑌

Proof of Theorem trpredrec
Dummy variables 𝑎 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 30970 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 nn0suc 6982 . . . 4 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
3 fveq2 6103 . . . . . . . . . . 11 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
43eleq2d 2673 . . . . . . . . . 10 (𝑖 = ∅ → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)))
54anbi2d 736 . . . . . . . . 9 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
65biimpd 218 . . . . . . . 8 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
7 setlikespec 5618 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
8 fr0g 7418 . . . . . . . . . . 11 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
97, 8syl 17 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
109eleq2d 2673 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
1110biimpa 500 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
126, 11syl6com 36 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = ∅ → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
13 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))
1413eleq2d 2673 . . . . . . . . . . . 12 (𝑖 = suc 𝑗 → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)))
1514anbi2d 736 . . . . . . . . . . 11 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
1615biimpd 218 . . . . . . . . . 10 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
17 fvex 6113 . . . . . . . . . . . . . . . . 17 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V
18 trpredlem1 30971 . . . . . . . . . . . . . . . . . . . . 21 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
197, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
2019sseld 3567 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝐴))
21 setlikespec 5618 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
2221expcom 450 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2322adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2420, 23syld 46 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2524ralrimiv 2948 . . . . . . . . . . . . . . . . 17 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
26 iunexg 7035 . . . . . . . . . . . . . . . . 17 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V ∧ ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
2717, 25, 26sylancr 694 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑅 Se 𝐴) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
28 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑎Pred(𝑅, 𝐴, 𝑋)
29 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑎𝑗
30 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . 21 𝑎(𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦))
3130, 28nfrdg 7397 . . . . . . . . . . . . . . . . . . . 20 𝑎rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋))
32 nfcv 2751 . . . . . . . . . . . . . . . . . . . 20 𝑎ω
3331, 32nfres 5319 . . . . . . . . . . . . . . . . . . 19 𝑎(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
3433, 29nffv 6110 . . . . . . . . . . . . . . . . . 18 𝑎((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
35 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑎Pred(𝑅, 𝐴, 𝑧)
3634, 35nfiun 4484 . . . . . . . . . . . . . . . . 17 𝑎 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)
37 eqid 2610 . . . . . . . . . . . . . . . . 17 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
38 predeq3 5601 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3938cbviunv 4495 . . . . . . . . . . . . . . . . . 18 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧)
40 iuneq1 4470 . . . . . . . . . . . . . . . . . 18 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4139, 40syl5eq 2656 . . . . . . . . . . . . . . . . 17 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4228, 29, 36, 37, 41frsucmpt 7420 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4327, 42sylan2 490 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4443eleq2d 2673 . . . . . . . . . . . . . 14 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ↔ 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4544biimpd 218 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4645expimpd 627 . . . . . . . . . . . 12 (𝑗 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
47 eliun 4460 . . . . . . . . . . . . 13 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧))
48 ssiun2 4499 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
49 dftrpred2 30963 . . . . . . . . . . . . . . . . . 18 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
5048, 49syl6sseqr 3615 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5150sseld 3567 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋)))
52 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
5352elpredim 5609 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧)
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧))
5551, 54anim12d 584 . . . . . . . . . . . . . . 15 (𝑗 ∈ ω → ((𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑧)) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝑅𝑧)))
5655reximdv2 2997 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5756com12 32 . . . . . . . . . . . . 13 (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5847, 57sylbi 206 . . . . . . . . . . . 12 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5946, 58syl6com 36 . . . . . . . . . . 11 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6059pm2.43d 51 . . . . . . . . . 10 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6116, 60syl6com 36 . . . . . . . . 9 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = suc 𝑗 → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6261com23 84 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6362rexlimdv 3012 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6412, 63orim12d 879 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6564ex 449 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6665com23 84 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
672, 66syl5 33 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → (𝑖 ∈ ω → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6867rexlimdv 3012 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
691, 68syl5bi 231 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   ciun 4455   class class class wbr 4583  cmpt 4643   Se wse 4995  cres 5040  Predcpred 5596  suc csuc 5642  cfv 5804  ωcom 6957  reccrdg 7392  TrPredctrpred 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator