Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setlikespec | Structured version Visualization version GIF version |
Description: If 𝑅 is set-like in 𝐴, then all predecessors classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
setlikespec | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3176 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elpred 5610 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋))) |
3 | 2 | abbi2dv 2729 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)}) |
4 | df-rab 2905 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)} | |
5 | 3, 4 | syl6reqr 2663 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
7 | seex 5001 | . . 3 ⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) | |
8 | 7 | ancoms 468 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) |
9 | 6, 8 | eqeltrrd 2689 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 {crab 2900 Vcvv 3173 class class class wbr 4583 Se wse 4995 Predcpred 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-se 4998 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 |
This theorem is referenced by: wfrlem15 7316 trpredtr 30974 trpredmintr 30975 trpredelss 30976 dftrpred3g 30977 trpredpo 30979 trpredrec 30982 frmin 30983 |
Copyright terms: Public domain | W3C validator |