Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  setlikespec Structured version   Visualization version   GIF version

Theorem setlikespec 5618
 Description: If 𝑅 is set-like in 𝐴, then all predecessors classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
setlikespec ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem setlikespec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . 6 𝑥 ∈ V
21elpred 5610 . . . . 5 (𝑋𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥𝐴𝑥𝑅𝑋)))
32abbi2dv 2729 . . . 4 (𝑋𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)})
4 df-rab 2905 . . . 4 {𝑥𝐴𝑥𝑅𝑋} = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)}
53, 4syl6reqr 2663 . . 3 (𝑋𝐴 → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
65adantr 480 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
7 seex 5001 . . 3 ((𝑅 Se 𝐴𝑋𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
87ancoms 468 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
96, 8eqeltrrd 2689 1 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  {crab 2900  Vcvv 3173   class class class wbr 4583   Se wse 4995  Predcpred 5596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-se 4998  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597 This theorem is referenced by:  wfrlem15  7316  trpredtr  30974  trpredmintr  30975  trpredelss  30976  dftrpred3g  30977  trpredpo  30979  trpredrec  30982  frmin  30983
 Copyright terms: Public domain W3C validator