Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 30983
Description: Every (possibly proper) subclass of a class 𝐴 with a founded, set-like relation 𝑅 has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 5628 and tz7.5 5661. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5005 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5007 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 584 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 3890 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 5601 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2612 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3282 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 449 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 481 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 setlikespec 5618 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → Pred(𝑅, 𝐵, 𝑏) ∈ V)
11 trpredpred 30972 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ∈ V → Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏))
12 ssn0 3928 . . . . . . . . . . . . . 14 ((Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)
1312ex 449 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
1411, 13syl 17 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
15 trpredss 30973 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
1614, 15jctild 564 . . . . . . . . . . 11 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1710, 16syl 17 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1817adantr 480 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
19 trpredex 30981 . . . . . . . . . . 11 TrPred(𝑅, 𝐵, 𝑏) ∈ V
20 sseq1 3589 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐𝐵 ↔ TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵))
21 neeq1 2844 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
2220, 21anbi12d 743 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
23 predeq2 5600 . . . . . . . . . . . . . . 15 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
2423eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2524rexeqbi1dv 3124 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2622, 25imbi12d 333 . . . . . . . . . . . 12 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅)))
2726imbi2d 329 . . . . . . . . . . 11 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅)) ↔ (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))))
28 dffr4 5613 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
29 sp 2041 . . . . . . . . . . . 12 (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3028, 29sylbi 206 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3119, 27, 30vtocl 3232 . . . . . . . . . 10 (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3210, 15syl 17 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
3332adantr 480 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
34 trpredtr 30974 . . . . . . . . . . . . . . . 16 ((𝑏𝐵𝑅 Se 𝐵) → (𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)))
3534imp 444 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏))
36 sspred 5605 . . . . . . . . . . . . . . 15 ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3733, 35, 36syl2anc 691 . . . . . . . . . . . . . 14 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3837eqeq1d 2612 . . . . . . . . . . . . 13 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3938biimprd 237 . . . . . . . . . . . 12 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → Pred(𝑅, 𝐵, 𝑦) = ∅))
4039reximdva 3000 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅))
41 ssrexv 3630 . . . . . . . . . . 11 (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4232, 40, 41sylsyld 59 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4331, 42sylan9r 688 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4418, 43syld 46 . . . . . . . 8 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4544an31s 844 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
469, 45pm2.61dne 2868 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
4746ex 449 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4847exlimdv 1848 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
494, 48syl5bi 231 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
503, 49syl6com 36 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
5150imp32 448 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540  c0 3874   Fr wfr 4994   Se wse 4995  Predcpred 5596  TrPredctrpred 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962
This theorem is referenced by:  frind  30984
  Copyright terms: Public domain W3C validator