Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggen2 Structured version   Visualization version   GIF version

Theorem symggen2 17714
 Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrf.g 𝐺 = (SymGrp‘𝐷)
symgtrf.b 𝐵 = (Base‘𝐺)
symggen.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
Assertion
Ref Expression
symggen2 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)

Proof of Theorem symggen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symgtrf.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
2 symgtrf.g . . 3 𝐺 = (SymGrp‘𝐷)
3 symgtrf.b . . 3 𝐵 = (Base‘𝐺)
4 symggen.k . . 3 𝐾 = (mrCls‘(SubMnd‘𝐺))
51, 2, 3, 4symggen 17713 . 2 (𝐷 ∈ Fin → (𝐾𝑇) = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6 difss 3699 . . . . . . 7 (𝑥 ∖ I ) ⊆ 𝑥
7 dmss 5245 . . . . . . 7 ((𝑥 ∖ I ) ⊆ 𝑥 → dom (𝑥 ∖ I ) ⊆ dom 𝑥)
86, 7ax-mp 5 . . . . . 6 dom (𝑥 ∖ I ) ⊆ dom 𝑥
92, 3symgbasf1o 17626 . . . . . . 7 (𝑥𝐵𝑥:𝐷1-1-onto𝐷)
10 f1odm 6054 . . . . . . 7 (𝑥:𝐷1-1-onto𝐷 → dom 𝑥 = 𝐷)
119, 10syl 17 . . . . . 6 (𝑥𝐵 → dom 𝑥 = 𝐷)
128, 11syl5sseq 3616 . . . . 5 (𝑥𝐵 → dom (𝑥 ∖ I ) ⊆ 𝐷)
13 ssfi 8065 . . . . 5 ((𝐷 ∈ Fin ∧ dom (𝑥 ∖ I ) ⊆ 𝐷) → dom (𝑥 ∖ I ) ∈ Fin)
1412, 13sylan2 490 . . . 4 ((𝐷 ∈ Fin ∧ 𝑥𝐵) → dom (𝑥 ∖ I ) ∈ Fin)
1514ralrimiva 2949 . . 3 (𝐷 ∈ Fin → ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
16 rabid2 3096 . . 3 (𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
1715, 16sylibr 223 . 2 (𝐷 ∈ Fin → 𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
185, 17eqtr4d 2647 1 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∖ cdif 3537   ⊆ wss 3540   I cid 4948  dom cdm 5038  ran crn 5039  –1-1-onto→wf1o 5803  ‘cfv 5804  Fincfn 7841  Basecbs 15695  mrClscmrc 16066  SubMndcsubmnd 17157  SymGrpcsymg 17620  pmTrspcpmtr 17684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-symg 17621  df-pmtr 17685 This theorem is referenced by:  psgnfitr  17760  mdetunilem7  20243
 Copyright terms: Public domain W3C validator