MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Visualization version   GIF version

Theorem supxrunb1 12021
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3562 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 11838 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 34 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 2948 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 480 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 peano2re 10088 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
7 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 + 1) → (𝑥𝑦 ↔ (𝑧 + 1) ≤ 𝑦))
87rexbidv 3034 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦))
98rspcva 3280 . . . . . . . . . . . . . . 15 (((𝑧 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
109adantrr 749 . . . . . . . . . . . . . 14 (((𝑧 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
1110ancoms 468 . . . . . . . . . . . . 13 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
126, 11sylan2 490 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
13 ssel2 3563 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
14 ltp1 10740 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1))
1514adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → 𝑧 < (𝑧 + 1))
166ancli 572 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ))
17 rexr 9964 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
18 rexr 9964 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 1) ∈ ℝ → (𝑧 + 1) ∈ ℝ*)
19 xrltletr 11864 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2018, 19syl3an2 1352 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2117, 20syl3an1 1351 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
22213expa 1257 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2316, 22sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2415, 23mpand 707 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2524ancoms 468 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2613, 25sylan 487 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2726an32s 842 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2827reximdva 3000 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
2928adantll 746 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
3012, 29mpd 15 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
3130exp31 628 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
3231a1dd 48 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
3332com4r 92 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3433com13 86 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3534imp 444 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
3635ralrimiv 2948 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
375, 36jca 553 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
38 pnfxr 9971 . . . . 5 +∞ ∈ ℝ*
39 supxr 12015 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4038, 39mpanl2 713 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4137, 40syldan 486 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → sup(𝐴, ℝ*, < ) = +∞)
4241ex 449 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → sup(𝐴, ℝ*, < ) = +∞))
43 rexr 9964 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4443ad2antlr 759 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
45 ltpnf 11830 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
46 breq2 4587 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
4745, 46syl5ibr 235 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
4847impcom 445 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
4948adantll 746 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
50 xrltso 11850 . . . . . . . 8 < Or ℝ*
5150a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
52 xrsupss 12011 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5352ad2antrr 758 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5451, 53suplub 8249 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
5544, 49, 54mp2and 711 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
5655ex 449 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦))
5743ad2antlr 759 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
5813adantlr 747 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
59 xrltle 11858 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥𝑦))
6057, 58, 59syl2anc 691 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
6160reximdva 3000 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
6256, 61syld 46 . . 3 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥𝑦))
6362ralrimdva 2952 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6442, 63impbid 201 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583   Or wor 4958  (class class class)co 6549  supcsup 8229  cr 9814  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  supxrbnd1  12023  uzsup  12524  limsupval2  14059  limsupbnd2  14062  rlimuni  14129  rlimcld2  14157  rlimno1  14232  esumcvg  29475  suplesup  38496
  Copyright terms: Public domain W3C validator