MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Visualization version   GIF version

Theorem uzsup 12524
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsup (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)

Proof of Theorem uzsup
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
2 flcl 12458 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
32peano2zd 11361 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
4 id 22 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
5 ifcl 4080 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
63, 4, 5syl2anr 494 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ)
7 zre 11258 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 reflcl 12459 . . . . . . . 8 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9 peano2re 10088 . . . . . . . 8 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
108, 9syl 17 . . . . . . 7 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
11 max1 11890 . . . . . . 7 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
127, 10, 11syl2an 493 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
13 eluz2 11569 . . . . . 6 (if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
141, 6, 12, 13syl3anbrc 1239 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ (ℤ𝑀))
15 uzsup.1 . . . . 5 𝑍 = (ℤ𝑀)
1614, 15syl6eleqr 2699 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍)
17 simpr 476 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1810adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ∈ ℝ)
196zred 11358 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ ℝ)
20 fllep1 12464 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2120adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ ((⌊‘𝑥) + 1))
22 max2 11892 . . . . . 6 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
237, 10, 22syl2an 493 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((⌊‘𝑥) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
2417, 18, 19, 21, 23letrd 10073 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀))
25 breq2 4587 . . . . 5 (𝑛 = if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) → (𝑥𝑛𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)))
2625rspcev 3282 . . . 4 ((if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀) ∈ 𝑍𝑥 ≤ if(𝑀 ≤ ((⌊‘𝑥) + 1), ((⌊‘𝑥) + 1), 𝑀)) → ∃𝑛𝑍 𝑥𝑛)
2716, 24, 26syl2anc 691 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ∃𝑛𝑍 𝑥𝑛)
2827ralrimiva 2949 . 2 (𝑀 ∈ ℤ → ∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛)
29 uzssz 11583 . . . . . 6 (ℤ𝑀) ⊆ ℤ
3015, 29eqsstri 3598 . . . . 5 𝑍 ⊆ ℤ
31 zssre 11261 . . . . 5 ℤ ⊆ ℝ
3230, 31sstri 3577 . . . 4 𝑍 ⊆ ℝ
33 ressxr 9962 . . . 4 ℝ ⊆ ℝ*
3432, 33sstri 3577 . . 3 𝑍 ⊆ ℝ*
35 supxrunb1 12021 . . 3 (𝑍 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞))
3634, 35ax-mp 5 . 2 (∀𝑥 ∈ ℝ ∃𝑛𝑍 𝑥𝑛 ↔ sup(𝑍, ℝ*, < ) = +∞)
3728, 36sylib 207 1 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cz 11254  cuz 11563  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455
This theorem is referenced by:  climrecl  14162  climge0  14163  caurcvg  14255  caucvg  14257  mbflimsup  23239  ioodvbdlimc1lem2  38822  ioodvbdlimc2lem  38824
  Copyright terms: Public domain W3C validator