Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   GIF version

Theorem suplesup 38496
Description: If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is smaller or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a (𝜑𝐴 ⊆ ℝ)
suplesup.b (𝜑𝐵 ⊆ ℝ*)
suplesup.c (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
Assertion
Ref Expression
suplesup (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem suplesup
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
2 ressxr 9962 . . . . . 6 ℝ ⊆ ℝ*
31, 2syl6ss 3580 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
4 supxrcl 12017 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
65adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
7 eqidd 2611 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = +∞)
8 simpr 476 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = +∞)
9 peano2re 10088 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
109adantl 481 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
113adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐴 ⊆ ℝ*)
12 supxrunb2 12022 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1311, 12syl 17 . . . . . . . . . . 11 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
148, 13mpbird 246 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
1514adantr 480 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
16 breq1 4586 . . . . . . . . . . 11 (𝑟 = (𝑤 + 1) → (𝑟 < 𝑥 ↔ (𝑤 + 1) < 𝑥))
1716rexbidv 3034 . . . . . . . . . 10 (𝑟 = (𝑤 + 1) → (∃𝑥𝐴 𝑟 < 𝑥 ↔ ∃𝑥𝐴 (𝑤 + 1) < 𝑥))
1817rspcva 3280 . . . . . . . . 9 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
1910, 15, 18syl2anc 691 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
20 1rp 11712 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 1 ∈ ℝ+)
22 suplesup.c . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
2322r19.21bi 2916 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
24 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑥𝑦) = (𝑥 − 1))
2524breq1d 4593 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − 1) < 𝑧))
2625rexbidv 3034 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − 1) < 𝑧))
2726rspcva 3280 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2821, 23, 27syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2928adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
30293adant3 1074 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
31 nfv 1830 . . . . . . . . . . . . 13 𝑧((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥)
32 simp11r 1166 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ)
332, 32sseldi 3566 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ*)
341sselda 3568 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
35 1red 9934 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 1 ∈ ℝ)
3634, 35resubcld 10337 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
3736adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
38373adant3 1074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑥 − 1) ∈ ℝ)
39383ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ)
402, 39sseldi 3566 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ*)
41 suplesup.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ*)
4241sselda 3568 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐵) → 𝑧 ∈ ℝ*)
4342adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
44433ad2antl1 1216 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
45443adant3 1074 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑧 ∈ ℝ*)
46 simp3 1056 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑤 + 1) < 𝑥)
47 simp1r 1079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 ∈ ℝ)
48 1red 9934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 1 ∈ ℝ)
4934adantlr 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
50493adant3 1074 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑥 ∈ ℝ)
5147, 48, 50ltaddsubd 10506 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ((𝑤 + 1) < 𝑥𝑤 < (𝑥 − 1)))
5246, 51mpbid 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 < (𝑥 − 1))
53523ad2ant1 1075 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < (𝑥 − 1))
54 simp3 1056 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) < 𝑧)
5533, 40, 45, 53, 54xrlttrd 11866 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < 𝑧)
56553exp 1256 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑧𝐵 → ((𝑥 − 1) < 𝑧𝑤 < 𝑧)))
5731, 56reximdai 2995 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (∃𝑧𝐵 (𝑥 − 1) < 𝑧 → ∃𝑧𝐵 𝑤 < 𝑧))
5830, 57mpd 15 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 𝑤 < 𝑧)
59583exp 1256 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6059adantlr 747 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6160rexlimdv 3012 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑥𝐴 (𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧))
6219, 61mpd 15 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤 < 𝑧)
632a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6463sselda 3568 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
6564ad2antrr 758 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ*)
6643adantr 480 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ*)
67 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
6865, 66, 67xrltled 38427 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤𝑧)
6968ex 449 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7069adantllr 751 . . . . . . . 8 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7170reximdva 3000 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑧𝐵 𝑤 < 𝑧 → ∃𝑧𝐵 𝑤𝑧))
7262, 71mpd 15 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤𝑧)
7372ralrimiva 2949 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧)
74 supxrunb1 12021 . . . . . . 7 (𝐵 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7541, 74syl 17 . . . . . 6 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7675adantr 480 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7773, 76mpbid 221 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐵, ℝ*, < ) = +∞)
787, 8, 773eqtr4d 2654 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = sup(𝐵, ℝ*, < ))
796, 78xreqled 38487 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
80 supeq1 8234 . . . . . . 7 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = sup(∅, ℝ*, < ))
81 xrsup0 12025 . . . . . . . 8 sup(∅, ℝ*, < ) = -∞
8281a1i 11 . . . . . . 7 (𝐴 = ∅ → sup(∅, ℝ*, < ) = -∞)
8380, 82eqtrd 2644 . . . . . 6 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = -∞)
8483adantl 481 . . . . 5 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) = -∞)
85 supxrcl 12017 . . . . . . . 8 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
8641, 85syl 17 . . . . . . 7 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
87 mnfle 11845 . . . . . . 7 (sup(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐵, ℝ*, < ))
8886, 87syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐵, ℝ*, < ))
8988adantr 480 . . . . 5 ((𝜑𝐴 = ∅) → -∞ ≤ sup(𝐵, ℝ*, < ))
9084, 89eqbrtrd 4605 . . . 4 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
9190adantlr 747 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
92 simpll 786 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → 𝜑)
931adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℝ)
94 neqne 2790 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
9594adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
96 supxrgtmnf 12031 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
9793, 95, 96syl2anc 691 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
9897adantlr 747 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
99 simpr 476 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
100 simpl 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
101 nltpnft 11871 . . . . . . . . . 10 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
102100, 5, 1013syl 18 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
10399, 102mtbid 313 . . . . . . . 8 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
104 notnotr 124 . . . . . . . 8 (¬ ¬ sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) < +∞)
105103, 104syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
106105adantr 480 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) < +∞)
10798, 106jca 553 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
10892, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109 xrrebnd 11873 . . . . . 6 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
110108, 109syl 17 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
111107, 110mpbird 246 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ)
112 nfv 1830 . . . . 5 𝑤(𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ)
11341adantr 480 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ⊆ ℝ*)
114 simpr 476 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
115114adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℝ)
116 simpr 476 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
117116rphalfcld 11760 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
118115, 117ltsubrpd 11780 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ))
1193ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝐴 ⊆ ℝ*)
120 rpre 11715 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
121 2re 10967 . . . . . . . . . . . . 13 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ∈ ℝ)
123 2ne0 10990 . . . . . . . . . . . . 13 2 ≠ 0
124123a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ≠ 0)
125120, 122, 124redivcld 10732 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
126125adantl 481 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
127115, 126resubcld 10337 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
1282, 127sseldi 3566 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*)
129 supxrlub 12027 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
130119, 128, 129syl2anc 691 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
131118, 130mpbid 221 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
132 rphalfcl 11734 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
1331323ad2ant2 1076 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → (𝑤 / 2) ∈ ℝ+)
134233adant2 1073 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
135 oveq2 6557 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 / 2) → (𝑥𝑦) = (𝑥 − (𝑤 / 2)))
136135breq1d 4593 . . . . . . . . . . . . 13 (𝑦 = (𝑤 / 2) → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − (𝑤 / 2)) < 𝑧))
137136rexbidv 3034 . . . . . . . . . . . 12 (𝑦 = (𝑤 / 2) → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧))
138137rspcva 3280 . . . . . . . . . . 11 (((𝑤 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
139133, 134, 138syl2anc 691 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
140139ad5ant134 1305 . . . . . . . . 9 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
141 recn 9905 . . . . . . . . . . . . . . . . . 18 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) ∈ ℂ)
142141adantr 480 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℂ)
143120recnd 9947 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+𝑤 ∈ ℂ)
144143adantl 481 . . . . . . . . . . . . . . . . . 18 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℂ)
145144halfcld 11154 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℂ)
146142, 145, 145subsub4d 10302 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) = (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))))
1471432halvesd 11155 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+ → ((𝑤 / 2) + (𝑤 / 2)) = 𝑤)
148147oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℝ+ → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
149148adantl 481 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
150146, 149eqtr2d 2645 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
151150adantll 746 . . . . . . . . . . . . . 14 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
152151adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
153152ad3antrrr 762 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
154127, 126resubcld 10337 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
155154adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
156155ad3antrrr 762 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
1572, 156sseldi 3566 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ*)
158120, 49sylanl2 681 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
159125ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑤 / 2) ∈ ℝ)
160158, 159resubcld 10337 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
161160adantllr 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
162161ad3antrrr 762 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
1632, 162sseldi 3566 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ*)
164 simp-6l 806 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝜑)
165 simplr 788 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧𝐵)
166164, 165, 42syl2anc 691 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧 ∈ ℝ*)
167 simp-6r 807 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → sup(𝐴, ℝ*, < ) ∈ ℝ)
168120ad5antlr 767 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑤 ∈ ℝ)
169168rehalfcld 11156 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑤 / 2) ∈ ℝ)
170167, 169resubcld 10337 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
171 simp-4r 803 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥𝐴)
172164, 171, 34syl2anc 691 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥 ∈ ℝ)
173 simpllr 795 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
174170, 172, 169, 173ltsub1dd 10518 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < (𝑥 − (𝑤 / 2)))
175 simpr 476 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) < 𝑧)
176157, 163, 166, 174, 175xrlttrd 11866 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < 𝑧)
177153, 176eqbrtrd 4605 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
178177ex 449 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) → ((𝑥 − (𝑤 / 2)) < 𝑧 → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
179178reximdva 3000 . . . . . . . . 9 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → (∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
180140, 179mpd 15 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
181180ex 449 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
182181rexlimdva 3013 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
183131, 182mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
184112, 113, 114, 183supxrgere 38490 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18592, 111, 184syl2anc 691 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18691, 185pm2.61dan 828 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18779, 186pm2.61dan 828 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   class class class wbr 4583  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  +crp 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator