Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq01 | Structured version Visualization version GIF version |
Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
Ref | Expression |
---|---|
sq01 | ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2782 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | sqval 12784 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
3 | mulid1 9916 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
4 | 3 | eqcomd 2616 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1)) |
5 | 2, 4 | eqeq12d 2625 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
7 | ax-1cn 9873 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
8 | mulcan 10543 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) | |
9 | 7, 8 | mp3an2 1404 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
10 | 9 | anabss5 853 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
11 | 6, 10 | bitrd 267 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ 𝐴 = 1)) |
12 | 11 | biimpd 218 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 → 𝐴 = 1)) |
13 | 12 | impancom 455 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
14 | 1, 13 | syl5bir 232 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
15 | 14 | orrd 392 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
16 | 15 | ex 449 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
17 | sq0 12817 | . . . 4 ⊢ (0↑2) = 0 | |
18 | oveq1 6556 | . . . 4 ⊢ (𝐴 = 0 → (𝐴↑2) = (0↑2)) | |
19 | id 22 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
20 | 17, 18, 19 | 3eqtr4a 2670 | . . 3 ⊢ (𝐴 = 0 → (𝐴↑2) = 𝐴) |
21 | sq1 12820 | . . . 4 ⊢ (1↑2) = 1 | |
22 | oveq1 6556 | . . . 4 ⊢ (𝐴 = 1 → (𝐴↑2) = (1↑2)) | |
23 | id 22 | . . . 4 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
24 | 21, 22, 23 | 3eqtr4a 2670 | . . 3 ⊢ (𝐴 = 1 → (𝐴↑2) = 𝐴) |
25 | 20, 24 | jaoi 393 | . 2 ⊢ ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑2) = 𝐴) |
26 | 16, 25 | impbid1 214 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 (class class class)co 6549 ℂcc 9813 0cc0 9815 1c1 9816 · cmul 9820 2c2 10947 ↑cexp 12722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-seq 12664 df-exp 12723 |
This theorem is referenced by: cphsubrglem 22785 |
Copyright terms: Public domain | W3C validator |