Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss5 Structured version   Visualization version   GIF version

Theorem anabss5 853
 Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
Hypothesis
Ref Expression
anabss5.1 ((𝜑 ∧ (𝜑𝜓)) → 𝜒)
Assertion
Ref Expression
anabss5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabss5
StepHypRef Expression
1 anabss5.1 . . 3 ((𝜑 ∧ (𝜑𝜓)) → 𝜒)
21anassrs 678 . 2 (((𝜑𝜑) ∧ 𝜓) → 𝜒)
32anabsan 850 1 ((𝜑𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  anabsi5  854  syl2an2r  872  mp3an2ani  1423  sq01  12848  faclbnd5  12947  hashssdif  13061  eqbrrdv2  33166  expgrowthi  37554  bccbc  37566  hoidmvlelem2  39486
 Copyright terms: Public domain W3C validator