Step | Hyp | Ref
| Expression |
1 | | smadiadetlem.g |
. . 3
⊢ 𝐺 = (mulGrp‘𝑅) |
2 | | marep01ma.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
3 | | marep01ma.r |
. . . 4
⊢ 𝑅 ∈ CRing |
4 | 3 | a1i 11 |
. . 3
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ CRing) |
5 | | marep01ma.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | | marep01ma.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
7 | 5, 6 | matrcl 20037 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
8 | 7 | simpld 474 |
. . . . 5
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
9 | 8 | 3ad2ant1 1075 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝑁 ∈ Fin) |
10 | 9 | adantr 480 |
. . 3
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑁 ∈ Fin) |
11 | | crngring 18381 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 3, 11 | mp1i 13 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ Ring) |
13 | | eldifi 3694 |
. . . . . . 7
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑄 ∈ 𝑃) |
14 | 13 | adantl 481 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑄 ∈ 𝑃) |
15 | | marep01ma.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
16 | 5, 6, 3, 2, 15 | marep01ma 20285 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝐵 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
17 | 16 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
19 | | smadiadetlem.p |
. . . . . . 7
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
20 | 5, 6, 19 | matepm2cl 20088 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) → ∀𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅)) |
21 | 12, 14, 18, 20 | syl3anc 1318 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∀𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅)) |
22 | | id 22 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
23 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑄‘𝑚) = (𝑄‘𝑛)) |
24 | 22, 23 | oveq12d 6567 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛))) |
25 | 24 | eleq1d 2672 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅) ↔ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
26 | 25 | rspccv 3279 |
. . . . 5
⊢
(∀𝑚 ∈
𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅) → (𝑛 ∈ 𝑁 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
27 | 21, 26 | syl 17 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝑛 ∈ 𝑁 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
28 | 27 | imp 444 |
. . 3
⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑛 ∈ 𝑁) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
29 | | id 22 |
. . . . 5
⊢ (𝑛 = 𝑚 → 𝑛 = 𝑚) |
30 | | fveq2 6103 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑄‘𝑛) = (𝑄‘𝑚)) |
31 | 29, 30 | oveq12d 6567 |
. . . 4
⊢ (𝑛 = 𝑚 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) = (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚))) |
32 | 31 | adantl 481 |
. . 3
⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑛 = 𝑚) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) = (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚))) |
33 | 19, 2, 15 | symgmatr01 20279 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 )) |
34 | 33 | 3adant1 1072 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 )) |
35 | 34 | imp 444 |
. . 3
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 ) |
36 | 1, 2, 4, 10, 28, 32, 35 | gsummgp0 18431 |
. 2
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 ) |
37 | 36 | ex 449 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 )) |