Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftmbl Structured version   Visualization version   GIF version

Theorem shftmbl 23113
 Description: A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.)
Assertion
Ref Expression
shftmbl ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem shftmbl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . 3 {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ)
3 elpwi 4117 . . . 4 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
4 simpll 786 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ∈ dom vol)
5 ssrab2 3650 . . . . . . . 8 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ
65a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ)
7 simprl 790 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝑦 ⊆ ℝ)
8 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐵 ∈ ℝ)
98renegcld 10336 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → -𝐵 ∈ ℝ)
10 eqidd 2611 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦})
117, 9, 10ovolshft 23086 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}))
12 simprr 792 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) ∈ ℝ)
1311, 12eqeltrrd 2689 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ)
14 mblsplit 23107 . . . . . . 7 ((𝐴 ∈ dom vol ∧ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ ∧ (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
154, 6, 13, 14syl3anc 1318 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
16 inss1 3795 . . . . . . . . 9 (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ 𝑦
1716, 7syl5ss 3579 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
18 mblss 23106 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
194, 18syl 17 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 eqidd 2611 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} = {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})
2119, 8, 20shft2rab 23083 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}})
2221ineq2d 3776 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
23 inrab 3858 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
24 elin 3758 . . . . . . . . . . . 12 ((𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
2524a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℝ → ((𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))
2625rabbiia 3161 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2723, 26eqtr4i 2635 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2822, 27syl6eq 2660 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
2917, 9, 28ovolshft 23086 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)))
307ssdifssd 3710 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
3121difeq2d 3690 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
32 difrab 3860 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
33 eldif 3550 . . . . . . . . . . . 12 ((𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
3433a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℝ → ((𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))
3534rabbiia 3161 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3632, 35eqtr4i 2635 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3731, 36syl6eq 2660 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
3830, 9, 37ovolshft 23086 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴)))
3929, 38oveq12d 6567 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
4015, 11, 393eqtr4d 2654 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))
4140expr 641 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ⊆ ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
423, 41sylan2 490 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ 𝒫 ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
4342ralrimiva 2949 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
44 ismbl 23101 . 2 ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol ↔ ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))))
452, 43, 44sylanbrc 695 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  ℝcr 9814   + caddc 9818   − cmin 10145  -cneg 10146  vol*covol 23038  volcvol 23039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-ovol 23040  df-vol 23041 This theorem is referenced by:  vitalilem4  23186  vitalilem5  23187
 Copyright terms: Public domain W3C validator