MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4f1o Structured version   Visualization version   GIF version

Theorem s4f1o 13513
Description: A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4f1o (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))

Proof of Theorem s4f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oun2prg 13512 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
21imp 444 . . . . 5 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
32adantr 480 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
4 s4prop 13505 . . . . . . . . 9 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
54adantr 480 . . . . . . . 8 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
65eqeq2d 2620 . . . . . . 7 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ ↔ 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})))
76biimpa 500 . . . . . 6 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
87eqcomd 2616 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = 𝐸)
9 eqidd 2611 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({0, 1} ∪ {2, 3}) = ({0, 1} ∪ {2, 3}))
10 eqidd 2611 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
118, 9, 10f1oeq123d 6046 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
123, 11mpbid 221 . . 3 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
13 dff1o5 6059 . . . . . . 7 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
14 dff12 6013 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
1514bicomi 213 . . . . . . . 8 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
1615anbi1i 727 . . . . . . 7 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
1713, 16sylbb2 227 . . . . . 6 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
18 ffdm 5975 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ dom 𝐸 ⊆ ({0, 1} ∪ {2, 3})))
1918simpld 474 . . . . . . . 8 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2019anim1i 590 . . . . . . 7 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2120anim1i 590 . . . . . 6 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2217, 21syl 17 . . . . 5 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
23 dff12 6013 . . . . . 6 (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2423anbi1i 727 . . . . 5 ((𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2522, 24sylibr 223 . . . 4 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
26 dff1o5 6059 . . . 4 (𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2725, 26sylibr 223 . . 3 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2812, 27syl 17 . 2 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2928exp31 628 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  ∃*wmo 2459  wne 2780  cun 3538  wss 3540  {cpr 4127  cop 4131   class class class wbr 4583  dom cdm 5038  ran crn 5039  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  ⟨“cs4 13439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446
This theorem is referenced by:  usgraexmplef  25929  usgraexmpledg  25932  usgrexmpledg  40486
  Copyright terms: Public domain W3C validator