MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdm Structured version   Visualization version   GIF version

Theorem ffdm 5975
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 5964 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21feq2d 5944 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵𝐹:𝐴𝐵))
32ibir 256 . 2 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
4 eqimss 3620 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
63, 5jca 553 1 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wss 3540  dom cdm 5038  wf 5800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-in 3547  df-ss 3554  df-fn 5807  df-f 5808
This theorem is referenced by:  ffdmd  5976  smoiso  7346  s4f1o  13513  islindf2  19972  f1lindf  19980  dfac21  36654  itgperiod  38873  fourierdlem92  39091  fouriersw  39124  etransclem2  39129
  Copyright terms: Public domain W3C validator