MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem3 Structured version   Visualization version   GIF version

Theorem rtrclreclem3 13648
Description: The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
rtrclreclem.rel (𝜑 → Rel 𝑅)
rtrclreclem.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem3 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem3
Dummy variables 𝑑 𝑒 𝑔 𝑓 𝑛 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5047 . . 3 ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)}
2 elopab 4908 . . . . 5 (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} ↔ ∃𝑒𝑔(𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)))
3 eqeq1 2614 . . . . . . . . . . 11 (𝑑 = ⟨𝑒, 𝑔⟩ → (𝑑 = ⟨𝑒, 𝑔⟩ ↔ ⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩))
43anbi1d 737 . . . . . . . . . 10 (𝑑 = ⟨𝑒, 𝑔⟩ → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) ↔ (⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑))))
5 simprr 792 . . . . . . . . . . . 12 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝜑)
6 simprl 790 . . . . . . . . . . . 12 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔))
7 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → 𝑒(t*rec‘𝑅)𝑓)
8 simprr 792 . . . . . . . . . . . . . . . . . 18 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → 𝜑)
9 rtrclreclem.rel . . . . . . . . . . . . . . . . . . 19 (𝜑 → Rel 𝑅)
10 rtrclreclem.rex . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ V)
119, 10dfrtrclrec2 13645 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓))
128, 11syl 17 . . . . . . . . . . . . . . . . 17 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓))
137, 12mpbid 221 . . . . . . . . . . . . . . . 16 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓)
14 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → 𝑓(t*rec‘𝑅)𝑔)
15 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → 𝜑)
169, 10dfrtrclrec2 13645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔))
1814, 17mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔)
19 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑛 ∈ ℕ0)
2019adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑛 ∈ ℕ0)
2120adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑛 ∈ ℕ0)
22 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → 𝑚 ∈ ℕ0)
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑚 ∈ ℕ0)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑚 ∈ ℕ0)
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑚 ∈ ℕ0)
2721, 26nn0addcld 11232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (𝑛 + 𝑚) ∈ ℕ0)
2821adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℕ0)
2928nn0cnd 11230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℂ)
3026adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℕ0)
3130nn0cnd 11230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℂ)
3229, 31addcomd 10117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
33 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → ((𝑛 + 𝑚) ∈ ℕ0 ↔ (𝑚 + 𝑛) ∈ ℕ0))
3433anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) ↔ ((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))))))
3526adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℕ0)
3621adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑛 ∈ ℕ0)
37 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝜑)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝜑)
3938, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → Rel 𝑅)
4038, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑅 ∈ V)
4139, 40relexpaddd 13642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛))))
4235, 36, 41mp2and 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛)))
43 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (𝑅𝑟(𝑛 + 𝑚)) = (𝑅𝑟(𝑚 + 𝑛)))
4443eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚)) ↔ ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑚 + 𝑛))))
4542, 44syl5ibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚))))
4634, 45sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚))))
4732, 46mpcom 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) = (𝑅𝑟(𝑛 + 𝑚)))
4847eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → (𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)))
49 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑒(𝑅𝑟𝑛)𝑓)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑒(𝑅𝑟𝑛)𝑓)
5150adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟𝑛)𝑓)
52 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → 𝑓(𝑅𝑟𝑚)𝑔)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → 𝑓(𝑅𝑟𝑚)𝑔)
5453adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → 𝑓(𝑅𝑟𝑚)𝑔)
5554adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑓(𝑅𝑟𝑚)𝑔)
5655adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑓(𝑅𝑟𝑚)𝑔)
57 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 𝑓 ∈ V
58 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ( = 𝑓 → (𝑒(𝑅𝑟𝑛)𝑒(𝑅𝑟𝑛)𝑓))
59 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ( = 𝑓 → ((𝑅𝑟𝑚)𝑔𝑓(𝑅𝑟𝑚)𝑔))
6058, 59anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ( = 𝑓 → ((𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔) ↔ (𝑒(𝑅𝑟𝑛)𝑓𝑓(𝑅𝑟𝑚)𝑔)))
6157, 60spcev 3273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑒(𝑅𝑟𝑛)𝑓𝑓(𝑅𝑟𝑚)𝑔) → ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
6251, 56, 61syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
63 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 𝑒 ∈ V
64 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 𝑔 ∈ V
6563, 64brco 5214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔 ↔ ∃(𝑒(𝑅𝑟𝑛)(𝑅𝑟𝑚)𝑔))
6662, 65sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔)
67 breq 4585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) → (𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔𝑒((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛))𝑔))
6866, 67syl5ibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅𝑟(𝑛 + 𝑚)) = ((𝑅𝑟𝑚) ∘ (𝑅𝑟𝑛)) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔))
6948, 68mpcom 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → 𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔)
70 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑖 = (𝑛 + 𝑚) → (𝑅𝑟𝑖) = (𝑅𝑟(𝑛 + 𝑚)))
7170breqd 4594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑖 = (𝑛 + 𝑚) → (𝑒(𝑅𝑟𝑖)𝑔𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔))
7271rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑛 + 𝑚) ∈ ℕ0𝑒(𝑅𝑟(𝑛 + 𝑚))𝑔) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
7369, 72syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))))) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
7427, 73mpancom 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔)
75 df-br 4584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑒(t*rec‘𝑅)𝑔 ↔ ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
7637, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → Rel 𝑅)
7737, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → 𝑅 ∈ V)
7876, 77dfrtrclrec2 13645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (𝑒(t*rec‘𝑅)𝑔 ↔ ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔))
7975, 78syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → (⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅) ↔ ∃𝑖 ∈ ℕ0 𝑒(𝑅𝑟𝑖)𝑔))
8074, 79mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
8180expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8281expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8382expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒(𝑅𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))))
8483anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))))
8584impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8685anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
8786impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓(t*rec‘𝑅)𝑔 ∧ ((𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8887anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
8988impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9089anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) ∧ (𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9190expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓(𝑅𝑟𝑚)𝑔𝑚 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9291expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0 → (𝑓(𝑅𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
9392rexlimiv 3009 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑚 ∈ ℕ0 𝑓(𝑅𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9418, 93mpcom 37 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9594expcom 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9695anassrs 678 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓(t*rec‘𝑅)𝑔𝜑) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
9796impcom 445 . . . . . . . . . . . . . . . . . . . 20 ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔𝜑) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0))) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9897anassrs 678 . . . . . . . . . . . . . . . . . . 19 (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) ∧ (𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
9998expcom 450 . . . . . . . . . . . . . . . . . 18 ((𝑒(𝑅𝑟𝑛)𝑓𝑛 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
10099expcom 450 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑒(𝑅𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))))
101100rexlimiv 3009 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ0 𝑒(𝑅𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
10213, 101mpcom 37 . . . . . . . . . . . . . . 15 ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
103102anassrs 678 . . . . . . . . . . . . . 14 (((𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
104103expcom 450 . . . . . . . . . . . . 13 (𝜑 → ((𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
105104exlimdv 1848 . . . . . . . . . . . 12 (𝜑 → (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
1065, 6, 105sylc 63 . . . . . . . . . . 11 ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅))
107 eleq1 2676 . . . . . . . . . . 11 (𝑑 = ⟨𝑒, 𝑔⟩ → (𝑑 ∈ (t*rec‘𝑅) ↔ ⟨𝑒, 𝑔⟩ ∈ (t*rec‘𝑅)))
108106, 107syl5ibr 235 . . . . . . . . . 10 (𝑑 = ⟨𝑒, 𝑔⟩ → ((⟨𝑒, 𝑔⟩ = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅)))
1094, 108sylbid 229 . . . . . . . . 9 (𝑑 = ⟨𝑒, 𝑔⟩ → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅)))
110109anabsi5 854 . . . . . . . 8 ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅))
111110anassrs 678 . . . . . . 7 (((𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) ∧ 𝜑) → 𝑑 ∈ (t*rec‘𝑅))
112111expcom 450 . . . . . 6 (𝜑 → ((𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅)))
113112exlimdvv 1849 . . . . 5 (𝜑 → (∃𝑒𝑔(𝑑 = ⟨𝑒, 𝑔⟩ ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅)))
1142, 113syl5bi 231 . . . 4 (𝜑 → (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅)))
115 eleq2 2677 . . . . 5 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ↔ 𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)}))
116115imbi1d 330 . . . 4 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → ((𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)) ↔ (𝑑 ∈ {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅))))
117114, 116syl5ibr 235 . . 3 (((t*rec‘𝑅) ∘ (t*rec‘𝑅)) = {⟨𝑒, 𝑔⟩ ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓𝑓(t*rec‘𝑅)𝑔)} → (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅))))
1181, 117ax-mp 5 . 2 (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)))
119118ssrdv 3574 1 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  cop 4131   class class class wbr 4583  {copab 4642  ccom 5042  Rel wrel 5043  cfv 5804  (class class class)co 6549   + caddc 9818  0cn0 11169  𝑟crelexp 13608  t*reccrtrcl 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-relexp 13609  df-rtrclrec 13644
This theorem is referenced by:  dfrtrcl2  13650
  Copyright terms: Public domain W3C validator