MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpaddnn Structured version   Visualization version   GIF version

Theorem relexpaddnn 13639
Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpaddnn ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddnn
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21coeq1d 5205 . . . . 5 (𝑛 = 1 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)))
3 oveq1 6556 . . . . . 6 (𝑛 = 1 → (𝑛 + 𝑀) = (1 + 𝑀))
43oveq2d 6565 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(1 + 𝑀)))
52, 4eqeq12d 2625 . . . 4 (𝑛 = 1 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀))))
65imbi2d 329 . . 3 (𝑛 = 1 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))))
7 oveq2 6557 . . . . . 6 (𝑛 = 𝑘 → (𝑅𝑟𝑛) = (𝑅𝑟𝑘))
87coeq1d 5205 . . . . 5 (𝑛 = 𝑘 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
9 oveq1 6556 . . . . . 6 (𝑛 = 𝑘 → (𝑛 + 𝑀) = (𝑘 + 𝑀))
109oveq2d 6565 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
118, 10eqeq12d 2625 . . . 4 (𝑛 = 𝑘 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))))
1211imbi2d 329 . . 3 (𝑛 = 𝑘 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))))
13 oveq2 6557 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑘 + 1)))
1413coeq1d 5205 . . . . 5 (𝑛 = (𝑘 + 1) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)))
15 oveq1 6556 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 + 𝑀) = ((𝑘 + 1) + 𝑀))
1615oveq2d 6565 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
1714, 16eqeq12d 2625 . . . 4 (𝑛 = (𝑘 + 1) → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀))))
1817imbi2d 329 . . 3 (𝑛 = (𝑘 + 1) → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
19 oveq2 6557 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2019coeq1d 5205 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)))
21 oveq1 6556 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 𝑀) = (𝑁 + 𝑀))
2221oveq2d 6565 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
2320, 22eqeq12d 2625 . . . 4 (𝑛 = 𝑁 → (((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2423imbi2d 329 . . 3 (𝑛 = 𝑁 → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑛) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑛 + 𝑀))) ↔ ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))))
25 relexp1g 13614 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2726coeq1d 5205 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ (𝑅𝑟𝑀)))
28 relexpsucnnl 13620 . . . . 5 ((𝑅𝑉𝑀 ∈ ℕ) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
2928ancoms 468 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅 ∘ (𝑅𝑟𝑀)))
30 simpl 472 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
3130nncnd 10913 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
32 1cnd 9935 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → 1 ∈ ℂ)
3331, 32addcomd 10117 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑀 + 1) = (1 + 𝑀))
3433oveq2d 6565 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑀 + 1)) = (𝑅𝑟(1 + 𝑀)))
3527, 29, 343eqtr2d 2650 . . 3 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟1) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(1 + 𝑀)))
36 simp2r 1081 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑅𝑉)
37 simp1 1054 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℕ)
38 relexpsucnnl 13620 . . . . . . . . 9 ((𝑅𝑉𝑘 ∈ ℕ) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
3936, 37, 38syl2anc 691 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟(𝑘 + 1)) = (𝑅 ∘ (𝑅𝑟𝑘)))
4039coeq1d 5205 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)))
41 coass 5571 . . . . . . 7 ((𝑅 ∘ (𝑅𝑟𝑘)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)))
4240, 41syl6eq 2660 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))))
43 simp3 1056 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)))
4443coeq2d 5206 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀))) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
4537nncnd 10913 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑘 ∈ ℂ)
46 1cnd 9935 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 1 ∈ ℂ)
47313ad2ant2 1076 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℂ)
4845, 46, 47add32d 10142 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑘 + 1) + 𝑀) = ((𝑘 + 𝑀) + 1))
4948oveq2d 6565 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 1) + 𝑀)) = (𝑅𝑟((𝑘 + 𝑀) + 1)))
50303ad2ant2 1076 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → 𝑀 ∈ ℕ)
5137, 50nnaddcld 10944 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑘 + 𝑀) ∈ ℕ)
52 relexpsucnnl 13620 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑘 + 𝑀) ∈ ℕ) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5336, 51, 52syl2anc 691 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅𝑟((𝑘 + 𝑀) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))))
5449, 53eqtr2d 2645 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → (𝑅 ∘ (𝑅𝑟(𝑘 + 𝑀))) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
5542, 44, 543eqtrd 2648 . . . . 5 ((𝑘 ∈ ℕ ∧ (𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))
56553exp 1256 . . . 4 (𝑘 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀)) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
5756a2d 29 . . 3 (𝑘 ∈ ℕ → (((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑘) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑘 + 𝑀))) → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝑘 + 1)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟((𝑘 + 1) + 𝑀)))))
586, 12, 18, 24, 35, 57nnind 10915 . 2 (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
59583impib 1254 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  ccom 5042  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818  cn 10897  𝑟crelexp 13608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-relexp 13609
This theorem is referenced by:  relexpaddg  13641  iunrelexpmin1  37019  relexpmulnn  37020  iunrelexpmin2  37023  relexpaddss  37029
  Copyright terms: Public domain W3C validator