Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2 Structured version   Visualization version   GIF version

Theorem ps-2 33782
 Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,𝐾   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑅   𝑢,𝑆   𝑢,𝑇

Proof of Theorem ps-2
StepHypRef Expression
1 simpl21 1132 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
2 simp1 1054 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ HL)
3 simp21 1087 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃𝐴)
4 simp23 1089 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅𝐴)
5 ps1.l . . . . . . . 8 = (le‘𝐾)
6 ps1.j . . . . . . . 8 = (join‘𝐾)
7 ps1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatlej1 33679 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑃 (𝑃 𝑅))
92, 3, 4, 8syl3anc 1318 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑅))
109adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑃 𝑅))
11 simp3r 1083 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇𝐴)
125, 6, 7hlatlej1 33679 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) → 𝑃 (𝑃 𝑇))
132, 3, 11, 12syl3anc 1318 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑇))
14 oveq1 6556 . . . . . . . 8 (𝑆 = 𝑃 → (𝑆 𝑇) = (𝑃 𝑇))
1514breq2d 4595 . . . . . . 7 (𝑆 = 𝑃 → (𝑃 (𝑆 𝑇) ↔ 𝑃 (𝑃 𝑇)))
1613, 15syl5ibrcom 236 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 = 𝑃𝑃 (𝑆 𝑇)))
1716imp 444 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑆 𝑇))
18 breq1 4586 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑃 𝑅) ↔ 𝑃 (𝑃 𝑅)))
19 breq1 4586 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑆 𝑇) ↔ 𝑃 (𝑆 𝑇)))
2018, 19anbi12d 743 . . . . . 6 (𝑢 = 𝑃 → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))))
2120rspcev 3282 . . . . 5 ((𝑃𝐴 ∧ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
221, 10, 17, 21syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
2322a1d 25 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
24 hlop 33667 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ OP)
25243ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ OP)
26 eqid 2610 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2610 . . . . . . . . . . . . . . . . . 18 (0.‘𝐾) = (0.‘𝐾)
2826, 27op0cl 33489 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
2925, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ∈ (Base‘𝐾))
3026, 7atbase 33594 . . . . . . . . . . . . . . . . 17 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 ∈ (Base‘𝐾))
32 eqid 2610 . . . . . . . . . . . . . . . . . 18 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3327, 32, 7atcvr0 33593 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
342, 3, 33syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
35 eqid 2610 . . . . . . . . . . . . . . . . 17 (lt‘𝐾) = (lt‘𝐾)
3626, 35, 32cvrlt 33575 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) → (0.‘𝐾)(lt‘𝐾)𝑃)
372, 29, 31, 34, 36syl31anc 1321 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)𝑃)
38 hlpos 33670 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
39383ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Poset)
40 hllat 33668 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
41403ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Lat)
4226, 7atbase 33594 . . . . . . . . . . . . . . . . . 18 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
434, 42syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅 ∈ (Base‘𝐾))
4426, 6latjcl 16874 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4541, 31, 43, 44syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4626, 5, 35pltletr 16794 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4739, 29, 31, 45, 46syl13anc 1320 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4837, 9, 47mp2and 711 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅))
4935pltne 16785 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
502, 29, 45, 49syl3anc 1318 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
5148, 50mpd 15 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ≠ (𝑃 𝑅))
5251necomd 2837 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ≠ (0.‘𝐾))
5352adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ≠ (0.‘𝐾))
54 hlatl 33665 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
55543ad2ant1 1075 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ AtLat)
56 simp3l 1082 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆𝐴)
575, 7atncmp 33617 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑃𝐴) → (¬ 𝑆 𝑃𝑆𝑃))
5855, 56, 3, 57syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃𝑆𝑃))
59 simp22 1088 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄𝐴)
6026, 5, 6, 7hlexch1 33686 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
61603expia 1259 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾))) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
622, 56, 59, 31, 61syl13anc 1320 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6358, 62sylbird 249 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6463imp32 448 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → 𝑄 (𝑃 𝑆))
6526, 7atbase 33594 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6659, 65syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄 ∈ (Base‘𝐾))
6726, 7atbase 33594 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6856, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ∈ (Base‘𝐾))
6926, 6latjcl 16874 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7041, 31, 68, 69syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7126, 5, 6latjlej1 16888 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7241, 66, 70, 43, 71syl13anc 1320 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7464, 73mpd 15 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7574adantrrr 757 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7626, 7atbase 33594 . . . . . . . . . . . . . . . . . 18 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
7711, 76syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇 ∈ (Base‘𝐾))
7826, 6latjcl 16874 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
7941, 66, 43, 78syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
8026, 6latjcl 16874 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8141, 70, 43, 80syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8226, 5lattr 16879 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8341, 77, 79, 81, 82syl13anc 1320 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8483expdimp 452 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8584adantrl 748 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8685adantrl 748 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8775, 86mpd 15 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑆) 𝑅))
886, 7hlatj32 33676 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
892, 3, 56, 4, 88syl13anc 1320 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
9089breq2d 4595 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9190adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9287, 91mpbid 221 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑅) 𝑆))
9353, 92jca 553 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9493adantrrl 756 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9594ex 449 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆))))
9626, 5, 6, 27, 7cvrat4 33747 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑇𝐴𝑆𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
972, 45, 11, 56, 96syl13anc 1320 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9895, 97syld 46 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9998impl 648 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
10099adantrlr 755 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
1015, 7atncmp 33617 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑇𝐴𝑆𝐴) → (¬ 𝑇 𝑆𝑇𝑆))
10255, 11, 56, 101syl3anc 1318 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑇𝑆))
103 necom 2835 . . . . . . . . . . . . . 14 (𝑇𝑆𝑆𝑇)
104102, 103syl6bb 275 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑆𝑇))
105104adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆𝑆𝑇))
106 simpl1 1057 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝐾 ∈ HL)
107 simpl3r 1110 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑇𝐴)
108 simpr 476 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑢𝐴)
10968adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑆 ∈ (Base‘𝐾))
11026, 5, 6, 7hlexch1 33686 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾)) ∧ ¬ 𝑇 𝑆) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
1111103expia 1259 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾))) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
112106, 107, 108, 109, 111syl13anc 1320 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
113105, 112sylbird 249 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (𝑆𝑇 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
114113imp 444 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) ∧ 𝑆𝑇) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
115114an32s 842 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
116115anim2d 587 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → ((𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
117116reximdva 3000 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
118117ad2ant2rl 781 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇)) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
119118adantrr 749 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
120100, 119mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
121120ex 449 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
12223, 121pm2.61dane 2869 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
123122imp 444 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764  joincjn 16767  0.cp0 16860  Latclat 16868  OPcops 33477   ⋖ ccvr 33567  Atomscatm 33568  AtLatcal 33569  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  ps-2b  33786  paddasslem3  34126
 Copyright terms: Public domain W3C validator