Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrbaslemOLD Structured version   Visualization version   GIF version

Theorem opsrbaslemOLD 19299
 Description: Obsolete version of opsrbaslem 19298 as of 9-Sep-2021. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrbas.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrbas.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrbaslemOLD.1 𝐸 = Slot 𝑁
opsrbaslemOLD.2 𝑁 ∈ ℕ
opsrbaslemOLD.3 𝑁 < 10
Assertion
Ref Expression
opsrbaslemOLD (𝜑 → (𝐸𝑆) = (𝐸𝑂))

Proof of Theorem opsrbaslemOLD
StepHypRef Expression
1 opsrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrbas.o . . . . 5 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 eqid 2610 . . . . 5 (le‘𝑂) = (le‘𝑂)
4 simprl 790 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V)
5 simprr 792 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V)
6 opsrbas.t . . . . . 6 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼))
81, 2, 3, 4, 5, 7opsrval2 19297 . . . 4 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
98fveq2d 6107 . . 3 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑂) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
10 opsrbaslemOLD.1 . . . . 5 𝐸 = Slot 𝑁
11 opsrbaslemOLD.2 . . . . 5 𝑁 ∈ ℕ
1210, 11ndxid 15716 . . . 4 𝐸 = Slot (𝐸‘ndx)
1311nnrei 10906 . . . . . 6 𝑁 ∈ ℝ
14 opsrbaslemOLD.3 . . . . . 6 𝑁 < 10
1513, 14ltneii 10029 . . . . 5 𝑁 ≠ 10
1610, 11ndxarg 15715 . . . . . 6 (𝐸‘ndx) = 𝑁
17 plendxOLD 15871 . . . . . 6 (le‘ndx) = 10
1816, 17neeq12i 2848 . . . . 5 ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝑁 ≠ 10)
1915, 18mpbir 220 . . . 4 (𝐸‘ndx) ≠ (le‘ndx)
2012, 19setsnid 15743 . . 3 (𝐸𝑆) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
219, 20syl6reqr 2663 . 2 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
22 0fv 6137 . . . . . . 7 (∅‘𝑇) = ∅
2322eqcomi 2619 . . . . . 6 ∅ = (∅‘𝑇)
24 reldmpsr 19182 . . . . . . 7 Rel dom mPwSer
2524ovprc 6581 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
26 reldmopsr 19294 . . . . . . . 8 Rel dom ordPwSer
2726ovprc 6581 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅)
2827fveq1d 6105 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇))
2923, 25, 283eqtr4a 2670 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇))
3029adantl 481 . . . 4 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇))
3130, 1, 23eqtr4g 2669 . . 3 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = 𝑂)
3231fveq2d 6107 . 2 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
3321, 32pm2.61dan 828 1 (𝜑 → (𝐸𝑆) = (𝐸𝑂))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ‘cfv 5804  (class class class)co 6549   < clt 9953  ℕcn 10897  10c10 10955  ndxcnx 15692   sSet csts 15693  Slot cslot 15694  lecple 15775   mPwSer cmps 19172   ordPwSer copws 19176 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-10OLD 10964  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ple 15788  df-psr 19177  df-opsr 19181 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator