Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version |
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
reldmopsr | ⊢ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr 19181 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
2 | 1 | reldmmpt2 6669 | 1 ⊢ Rel dom ordPwSer |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 Vcvv 3173 [wsbc 3402 ⦋csb 3499 ⊆ wss 3540 𝒫 cpw 4108 {cpr 4127 〈cop 4131 class class class wbr 4583 {copab 4642 ↦ cmpt 4643 × cxp 5036 ◡ccnv 5037 dom cdm 5038 “ cima 5041 Rel wrel 5043 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 ℕcn 10897 ℕ0cn0 11169 ndxcnx 15692 sSet csts 15693 Basecbs 15695 lecple 15775 ltcplt 16764 mPwSer cmps 19172 <bag cltb 19175 ordPwSer copws 19176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-dm 5048 df-oprab 6553 df-mpt2 6554 df-opsr 19181 |
This theorem is referenced by: opsrle 19296 opsrbaslem 19298 opsrbaslemOLD 19299 psr1val 19377 |
Copyright terms: Public domain | W3C validator |