Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version |
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
psr1val | ⊢ 𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
2 | oveq2 6557 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1𝑜 ordPwSer 𝑟) = (1𝑜 ordPwSer 𝑅)) | |
3 | 2 | fveq1d 6105 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1𝑜 ordPwSer 𝑟)‘∅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
4 | df-psr1 19371 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1𝑜 ordPwSer 𝑟)‘∅)) | |
5 | fvex 6113 | . . . 4 ⊢ ((1𝑜 ordPwSer 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6191 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
7 | 0fv 6137 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
8 | 7 | eqcomi 2619 | . . . 4 ⊢ ∅ = (∅‘∅) |
9 | fvprc 6097 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
10 | reldmopsr 19294 | . . . . . 6 ⊢ Rel dom ordPwSer | |
11 | 10 | ovprc2 6583 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1𝑜 ordPwSer 𝑅) = ∅) |
12 | 11 | fveq1d 6105 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1𝑜 ordPwSer 𝑅)‘∅) = (∅‘∅)) |
13 | 8, 9, 12 | 3eqtr4a 2670 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
14 | 6, 13 | pm2.61i 175 | . 2 ⊢ (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅) |
15 | 1, 14 | eqtri 2632 | 1 ⊢ 𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 ‘cfv 5804 (class class class)co 6549 1𝑜c1o 7440 ordPwSer copws 19176 PwSer1cps1 19366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-opsr 19181 df-psr1 19371 |
This theorem is referenced by: psr1crng 19378 psr1assa 19379 psr1tos 19380 psr1bas2 19381 vr1cl2 19384 ply1lss 19387 ply1subrg 19388 psr1plusg 19413 psr1vsca 19414 psr1mulr 19415 psr1ring 19438 psr1lmod 19440 psr1sca 19441 |
Copyright terms: Public domain | W3C validator |