Step | Hyp | Ref
| Expression |
1 | | opsrval.o |
. 2
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
2 | | opsrval.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
3 | | elex 3185 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
5 | | opsrval.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
6 | | elex 3185 |
. . . . 5
⊢ (𝑅 ∈ 𝑊 → 𝑅 ∈ V) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ V) |
8 | | xpexg 6858 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → (𝐼 × 𝐼) ∈ V) |
9 | 2, 2, 8 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → (𝐼 × 𝐼) ∈ V) |
10 | | pwexg 4776 |
. . . . 5
⊢ ((𝐼 × 𝐼) ∈ V → 𝒫 (𝐼 × 𝐼) ∈ V) |
11 | | mptexg 6389 |
. . . . 5
⊢
(𝒫 (𝐼
× 𝐼) ∈ V →
(𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) |
12 | 9, 10, 11 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) |
13 | | simpl 472 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → 𝑖 = 𝐼) |
14 | 13 | sqxpeqd 5065 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 × 𝑖) = (𝐼 × 𝐼)) |
15 | 14 | pweqd 4113 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → 𝒫 (𝑖 × 𝑖) = 𝒫 (𝐼 × 𝐼)) |
16 | | ovex 6577 |
. . . . . . . 8
⊢ (𝑖 mPwSer 𝑠) ∈ V |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) ∈ V) |
18 | | id 22 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑖 mPwSer 𝑠) → 𝑝 = (𝑖 mPwSer 𝑠)) |
19 | | oveq12 6558 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) = (𝐼 mPwSer 𝑅)) |
20 | 18, 19 | sylan9eqr 2666 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = (𝐼 mPwSer 𝑅)) |
21 | | opsrval.s |
. . . . . . . . 9
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
22 | 20, 21 | syl6eqr 2662 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = 𝑆) |
23 | 22 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = (Base‘𝑆)) |
24 | | opsrval.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
25 | 23, 24 | syl6eqr 2662 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = 𝐵) |
26 | 25 | sseq2d 3596 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ({𝑥, 𝑦} ⊆ (Base‘𝑝) ↔ {𝑥, 𝑦} ⊆ 𝐵)) |
27 | | ovex 6577 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ↑𝑚 𝑖) ∈ V |
28 | 27 | rabex 4740 |
. . . . . . . . . . . . . 14
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
30 | 13 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑖 = 𝐼) |
31 | 30 | oveq2d 6565 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) |
32 | | rabeq 3166 |
. . . . . . . . . . . . . . 15
⊢
((ℕ0 ↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
34 | | opsrval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
35 | 33, 34 | syl6eqr 2662 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
36 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
37 | | simpllr 795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑠 = 𝑅) |
38 | 37 | fveq2d 6107 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = (lt‘𝑅)) |
39 | | opsrval.q |
. . . . . . . . . . . . . . . . 17
⊢ < =
(lt‘𝑅) |
40 | 38, 39 | syl6eqr 2662 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = < ) |
41 | 40 | breqd 4594 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ↔ (𝑥‘𝑧) < (𝑦‘𝑧))) |
42 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑖 = 𝐼) |
43 | 42 | oveq2d 6565 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑟 <bag 𝑖) = (𝑟 <bag 𝐼)) |
44 | 43 | breqd 4594 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑤(𝑟 <bag 𝑖)𝑧 ↔ 𝑤(𝑟 <bag 𝐼)𝑧)) |
45 | 44 | imbi1d 330 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
46 | 36, 45 | raleqbidv 3129 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
47 | 41, 46 | anbi12d 743 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
48 | 36, 47 | rexeqbidv 3130 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
49 | 29, 35, 48 | sbcied2 3440 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
50 | 49 | orbi1d 735 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
51 | 26, 50 | anbi12d 743 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)))) |
52 | 51 | opabbidv 4648 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
53 | 52 | opeq2d 4347 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉 = 〈(le‘ndx),
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
54 | 22, 53 | oveq12d 6567 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
55 | 17, 54 | csbied 3526 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
56 | 15, 55 | mpteq12dv 4663 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
57 | | df-opsr 19181 |
. . . . 5
⊢ ordPwSer
= (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
58 | 56, 57 | ovmpt2ga 6688 |
. . . 4
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
59 | 4, 7, 12, 58 | syl3anc 1318 |
. . 3
⊢ (𝜑 → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
60 | | simpr 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → 𝑟 = 𝑇) |
61 | 60 | oveq1d 6564 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑟 <bag 𝐼) = (𝑇 <bag 𝐼)) |
62 | | opsrval.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = (𝑇 <bag 𝐼) |
63 | 61, 62 | syl6eqr 2662 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑟 <bag 𝐼) = 𝐶) |
64 | 63 | breqd 4594 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑤(𝑟 <bag 𝐼)𝑧 ↔ 𝑤𝐶𝑧)) |
65 | 64 | imbi1d 330 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → ((𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
66 | 65 | ralbidv 2969 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
67 | 66 | anbi2d 736 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
68 | 67 | rexbidv 3034 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
69 | 68 | orbi1d 735 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → ((∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
70 | 69 | anbi2d 736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)))) |
71 | 70 | opabbidv 4648 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
72 | | opsrval.l |
. . . . . 6
⊢ ≤ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} |
73 | 71, 72 | syl6eqr 2662 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = ≤ ) |
74 | 73 | opeq2d 4347 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉 = 〈(le‘ndx), ≤
〉) |
75 | 74 | oveq2d 6565 |
. . 3
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |
76 | | opsrval.t |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
77 | | elpw2g 4754 |
. . . . 5
⊢ ((𝐼 × 𝐼) ∈ V → (𝑇 ∈ 𝒫 (𝐼 × 𝐼) ↔ 𝑇 ⊆ (𝐼 × 𝐼))) |
78 | 9, 77 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑇 ∈ 𝒫 (𝐼 × 𝐼) ↔ 𝑇 ⊆ (𝐼 × 𝐼))) |
79 | 76, 78 | mpbird 246 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝒫 (𝐼 × 𝐼)) |
80 | | ovex 6577 |
. . . 4
⊢ (𝑆 sSet 〈(le‘ndx),
≤
〉) ∈ V |
81 | 80 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉)
∈ V) |
82 | 59, 75, 79, 81 | fvmptd 6197 |
. 2
⊢ (𝜑 → ((𝐼 ordPwSer 𝑅)‘𝑇) = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |
83 | 1, 82 | syl5eq 2656 |
1
⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |